Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biomed Microdevices ; 11(3): 615-24, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19104940

RESUMEN

Highly porous poly(D,L-lactide-co-glycolide) (PLGA) scaffolds for cartilage tissue engineering were fabricated in this study using the fused deposition manufacturing (FDM) process and were further modified by type II collagen. The average molecular weight of PLGA decreased to about 60% of the original value after the melt-extrusion process. Type II collagen exhibited sponge-like structure and filled the macroporous FDM scaffolds. An increase of the fiber spacing resulted in an increase of the porosity. The storage modulus of FDM scaffolds with a large fiber spacing was comparable to that of the native porcine articular cartilage. Although the FDM hybrid scaffolds were swollen in various extents after 28 days of in vitro culture, the seeded chondrocytes were well distributed in the interior of the scaffolds with a large fiber spacing and neocartilage was formed around the scaffolds. The study also suggested that a low processing temperature may be required to produce PLGA precision scaffolds using FDM.


Asunto(s)
Condrocitos/citología , Colágeno Tipo II , Andamios del Tejido , Animales , Cartílago Articular/crecimiento & desarrollo , Proliferación Celular , Células Cultivadas , Inmunohistoquímica , Ácido Láctico/química , Microscopía Electrónica de Rastreo , Peso Molecular , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros/química , Porosidad , Sus scrofa , Factores de Tiempo , Ingeniería de Tejidos
2.
Ann Plast Surg ; 63(5): 517-21, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20431514

RESUMEN

Computer applications in head and neck reconstruction are rapidly emerging and create not only a virtual environment for presurgical planning, but also help in image-guided navigational surgery. This study evaluates the use of prefabricated 3-dimensional (3D) mirror image templates made by computer-simulated adjusted occlusions to assist in microvascular prefabricated flap insertion during reconstructive surgery. Five patients underwent tumor ablation surgery in 1999 and survived for 8 years. Four of the patients with malignancy received radiation therapy. All patients in this study suffered from severe malocclusion causing trismus, headache, temporomandibular joint pain, an unsymmetrical face, and the inability of further osseointegrated teeth insertion. They underwent a 3D computer tomography examination and the nonprocessed raw data were sent for computer simulation in adjusting occlusion; thus, a mirror image template could be fabricated for microsurgical flap guidance. The computer simulated occlusion was acceptable and facial symmetry obtained. The use of the template resulted in a shorter operation time and recovery was as expected. The computer-simulated occlusion-adjusted 3D mirror image templates aid in the use of free vascularized bone flaps for restoring continuity to the mandible. The coordinated arch will help with further osseointegration teeth insertion.


Asunto(s)
Simulación por Computador , Neoplasias Faciales/cirugía , Maloclusión/cirugía , Mandíbula/cirugía , Procedimientos de Cirugía Plástica/métodos , Complicaciones Posoperatorias/cirugía , Cirugía Asistida por Computador , Colgajos Quirúrgicos , Neoplasias Faciales/radioterapia , Humanos , Imagenología Tridimensional , Masculino , Maloclusión/etiología , Enfermedades Mandibulares/cirugía , Microcirugia , Persona de Mediana Edad , Osteorradionecrosis/cirugía , Tomografía Computarizada por Rayos X
4.
J Biomed Mater Res B Appl Biomater ; 80(2): 519-27, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16862556

RESUMEN

In this study, fused deposition manufacturing (FDM) was utilized to fabricate the precision scaffolds for cartilage and bone regeneration. Cell seeding into such scaffolds was evaluated. For poly(D,l-lactide) (PLA) scaffolds used for cartilage regeneration, the structure with larger inner space, four direction stacking (4D) and small interval of fibers were better. Chondrocyte proliferated well with matrix accumulation in precision scaffolds coated with type II collagen at 4 weeks of in vitro culture. The seeding efficiency of osteoblasts in most polycaprolactone (PCL) scaffolds used for bone regeneration could arrive 50% of original cell seeding density, and the amount of cells in scaffolds increased to double fold after 2 weeks of in vitro culture. The histological cross-section also revealed proliferation and mineralization of osteoblasts among the PCL fibers. The results indicated that the highly porous and interconnected structure of precision scaffolds could benefit cell ingrowth.


Asunto(s)
Condrocitos/citología , Osteoblastos/citología , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles , Regeneración Ósea , Cartílago/citología , Cartílago/fisiología , Proliferación Celular , Células Cultivadas , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Poliésteres , Ratas , Regeneración , Sus scrofa , Agua
5.
Biomaterials ; 83: 156-68, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26774563

RESUMEN

Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFß3 or a small molecule drug Y27632 to replace TGFß3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering.


Asunto(s)
Cartílago/fisiología , Poliuretanos/farmacología , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Agua/química , Amidas/farmacología , Animales , Biomarcadores/metabolismo , Cartílago/efectos de los fármacos , Agregación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Condrogénesis/genética , Preparaciones de Acción Retardada , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ácido Hialurónico/farmacología , Implantes Experimentales , Tinta , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Polietilenglicoles/química , Polietilenglicoles/farmacología , Poliuretanos/química , Piridinas/farmacología , Conejos , Regeneración/efectos de los fármacos , Soluciones , Factor de Crecimiento Transformador beta3/farmacología
7.
Adv Healthc Mater ; 3(10): 1578-87, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24729580

RESUMEN

Biodegradable materials that can undergo degradation in vivo are commonly employed to manufacture tissue engineering scaffolds, by techniques including the customized 3D printing. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. So far, there is no investigation on water-based 3D printing for synthetic materials. In this study, the water dispersion of elastic and biodegradable polyurethane (PU) nanoparticles is synthesized, which is further employed to fabricate scaffolds by 3D printing using polyethylene oxide (PEO) as a viscosity enhancer. The surface morphology, degradation rate, and mechanical properties of the water-based 3D-printed PU scaffolds are evaluated and compared with those of polylactic-co-glycolic acid (PLGA) scaffolds made from the solution in organic solvent. These scaffolds are seeded with chondrocytes for evaluation of their potential as cartilage scaffolds. Chondrocytes in 3D-printed PU scaffolds have excellent seeding efficiency, proliferation, and matrix production. Since PU is a category of versatile materials, the aqueous 3D printing process developed in this study is a platform technology that can be used to fabricate devices for biomedical applications.


Asunto(s)
Plásticos Biodegradables/química , Bioimpresión/métodos , Cartílago/química , Poliuretanos/química , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Animales , Cartílago/citología , Cartílago/metabolismo , Línea Celular , Proliferación Celular/fisiología , Condrocitos/citología , Ratas , Andamios del Tejido
8.
J Biomed Mater Res A ; 93(4): 1482-92, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19998464

RESUMEN

The effect of galectin-1 (GAL1) on the growth of immortal rat chondrocyte (IRC) on chitosan-modified PLGA scaffold is investigated. The experimental results showed that water absorption ratio of chitosan-modified PLGA scaffold was 70% higher than that of PLGA alone after immersion in ddH(2)O for 2 weeks, indicating that chitosan-modification significantly enhances the hydrophilicity of PLGA. The experimental results also showed that GALl efficiently and spontaneously coats the chitosan-PLGA scaffold surface to promote adhesion and growth of immortal rat chondrocyte (IRC). To investigate the effect of endogenous GAL1, the full-length GAL1 cDNAs were cloned and constructed into pcDNA3.1 vectors to generate a plasmid expressed in IRC (IRC-GAL1). The results showed that IRC-GAL1 growth was significantly higher than that of IRC on chitosan-PLGA scaffold. The GAL1-potentiated IRC growth on chitosan-PLGA scaffold was dose-dependently inhibited by TDG (specific inhibitor of GAL1 binding). These results strongly suggest that GAL1 is critical for enhancing IRC cell adhesion and growth on chitosan-PLGA scaffold. Moreover, GAL1-coating or expression tends to promote IRC cell-cell aggregation on chitosan-PLGA scaffold and significantly enhances IRC migration. These results suggest that GAL1 probably could induce tissue differentiation and facilitates cartilage reconstruction. In conclusion, the experimental results suggest that both GAL1 and chitosan are important for enhancing IRC cell adhesion and growth on PLGA scaffold, and GAL1 is a potential biomaterial for tissue engineering.


Asunto(s)
Quitosano/química , Condrocitos/citología , Galectina 1/química , Ácido Láctico/química , Ácido Poliglicólico/química , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química , Animales , Cartílago/patología , Adhesión Celular , Agregación Celular , Movimiento Celular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Proteínas Recombinantes/química , Tiogalactósidos/química , Ingeniería de Tejidos/métodos , Agua/química
9.
Tissue Eng Part A ; 15(5): 965-75, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18803500

RESUMEN

The fused deposition manufacturing (FDM) system has been used to fabricate tissue-engineered scaffolds with highly interconnecting and controllable pore structure, although the system is limited to a few materials. For this reason, the liquid-frozen deposition manufacturing (LFDM) system based on an improvement of the FDM process was developed. Poly(D,L-lactide-co-glycolide) (PLGA) precision scaffolds were fabricated using LFDM from PLGA solutions of different concentrations. A greater concentration of PLGA solution resulted in greater mechanical strength but also resulted in less water content and smaller pore size on the surface of the scaffolds. LFDM scaffolds in general had mechanical strength closer to that of native articular cartilage than did FDM scaffolds. Neocartilage formation was observed in LFDM scaffolds seeded with porcine articular chondrocytes after 28 days of culture. Chondrocytes in LFDM scaffolds made from low concentrations (15-20%) of PLGA solution maintained a round shape, proliferated well, and secreted abundant extracellular matrix. In contrast, the FDM PLGA scaffolds had low cell numbers and poor matrix production because of heavy swelling. The LFDM system offered a useful way to fabricate scaffolds for cartilage tissue-engineering applications.


Asunto(s)
Cartílago Articular , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Materiales Biocompatibles , Cartílago Articular/crecimiento & desarrollo , Cartílago Articular/lesiones , Cartílago Articular/fisiología , Recuento de Células , Proliferación Celular , Forma de la Célula , Condrocitos/citología , Condrocitos/fisiología , Colágeno/metabolismo , Matriz Extracelular/fisiología , Congelación , Glicosaminoglicanos/metabolismo , Ácido Láctico , Microscopía Electrónica de Rastreo , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Porcinos , Ingeniería de Tejidos/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA