Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ecotoxicol Environ Saf ; 273: 116130, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394761

RESUMEN

The manganese peroxidase (MnP) can degrade multiple mycotoxins including deoxynivalenol (DON) efficiently; however, the lignin components abundant in foods and feeds were discovered to interfere with DON catalysis. Herein, using MnP from Ceriporiopsis subvermispora (CsMnP) as a model, it was demonstrated that desired catalysis of DON, but not futile reactions with lignin, in the reaction systems containing feeds could be achieved by engineering MnP and supplementing with a boosting reactant. Specifically, two successive strategies (including the fusion of CsMnP to a DON-recognizing ScFv and identification of glutathione as a specific targeting enhancer) were combined to overcome the lignin competition, which together resulted into elevation of the degradation rate from 2.5% to as high as 82.7% in the feeds. The method to construct a targeting MnP and fortify it with an additional enhancer could be similarly applied to catalyze the many other mycotoxins with yet unknown responsive biocatalysts.


Asunto(s)
Lignina , Micotoxinas , Tricotecenos , Lignina/metabolismo , Peroxidasas/metabolismo
2.
Angew Chem Int Ed Engl ; 59(33): 13871-13878, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32385924

RESUMEN

The global demand for lactic acid (LA) is increasing due to its successful application as monomer for the manufacture of bioplastics. Although N-heterocyclic carbene (NHC) iridium complexes are promising molecular catalysts for LA synthesis, their instabilities have hindered their utilization especially in commercial applications. Here, we report that a porous self-supported NHC-iridium coordination polymer can efficiently prevent the clusterization of corresponding NHC-Ir molecules and can function as a solid molecular recyclable catalyst for dehydrogenation of bio-polyols to form LA with excellent activity (97 %) and selectivity (>99 %). A turnover number of up to 5700 could be achieved in a single batch, due to the synergistic participation of the Ba2+ and hydroxide ions, as well as the blockage of unwanted pathways by adding methanol. Our findings demonstrate a potential route for the industrial production of LA from cheap and abundant bio-polyols, including sorbitol.


Asunto(s)
Ácido Láctico/química , Polímeros/química , Catálisis , Complejos de Coordinación/química , Hidrogenación , Oxidación-Reducción
3.
Microb Cell Fact ; 18(1): 138, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426823

RESUMEN

BACKGROUND: The development of sustainable technologies for plant cell wall degradation greatly depends on enzymes with hydrolytic activities against carbohydrates. The waste by-products of agricultural cereals are important biomass sources because they contain large amounts of saccharides. Achieving efficient debranching and depolymerization are two important objectives for increasing the utilization of such renewable bioresources. GH51 α-L-arabinofuranosidases are important in biomass pretreatment because they act synergistically with other enzymes during hemicellulose hydrolysis. RESULTS: A GH51 α-L-arabinofuranosidase from Talaromyces leycettanus JCM12802 was heterologously expressed in Pichia pastoris GS115 and characterized. The recombinant α-L-arabinofuranosidase, TlAbf51, showed an optimum temperature and pH of 55-60 °C and 3.5-4.0, respectively, and remained stable at 50 °C and pH 3.0-9.0. TlAbf51 showed a higher catalytic efficiency (5712 mM-1 s-1) than most fungal α-L-arabinofuranosidases towards the substrate 4-nitrophenyl-α-L-arabinofuranoside. Moreover, TlAbf51 preferentially removed 1,2- or 1,3-linked arabinofuranose residues from arabinoxylan and acted synergistically with the bifunctional xylanase/cellulase TcXyn10A at an activity ratio of 5:1. The highest yields of arabinose and xylooligosaccharides were obtained when TlAbf51 was added after TcXyn10A or when both enzymes were added simultaneously. High-performance anion-exchange chromatography analyses showed that (i) arabinose and xylooligosaccharides with low degrees of polymerization (DP1-DP5) and (ii) arabinose and xylooligosaccharides (DP1-DP3) were the major hydrolysates obtained during the hydrolysis of sodium hydroxide-pretreated cornstalk and corn bran, respectively. CONCLUSIONS: In contrast to other fungal GH51 α-L-arabinofuranosidases, recombinant TlAbf51 showed excellent stability over a broad pH range and high catalytic efficiency. Moreover, TlAbf51 acted synergistically with another hemicellulase to digest arabino-polysaccharides. These favorable enzymatic properties make TlAbf51 attractive for biomass pretreatment and biofuel production.


Asunto(s)
Proteínas Fúngicas/química , Glicósido Hidrolasas/química , Lignina/metabolismo , Proteínas Recombinantes/química , Talaromyces/enzimología , Clonación Molecular , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Pichia/genética , Especificidad por Sustrato
4.
J Biol Chem ; 292(47): 19315-19327, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-28974575

RESUMEN

Bifunctional glycoside hydrolases have potential for cost-savings in enzymatic decomposition of plant cell wall polysaccharides for biofuels and bio-based chemicals. The N-terminal GH10 domain of a bifunctional multimodular enzyme CbXyn10C/Cel48B from Caldicellulosiruptor bescii is an enzyme able to degrade xylan and cellulose simultaneously. However, the molecular mechanism underlying its substrate promiscuity has not been elucidated. Herein, we discovered that the binding cleft of CbXyn10C would have at least six sugar-binding subsites by using isothermal titration calorimetry analysis of the inactive E140Q/E248Q mutant with xylo- and cello-oligosaccharides. This was confirmed by determining the catalytic efficiency of the wild-type enzyme on these oligosaccharides. The free form and complex structures of CbXyn10C with xylose- or glucose-configured oligosaccharide ligands were further obtained by crystallographic analysis and molecular modeling and docking. CbXyn10C was found to have a typical (ß/α)8-TIM barrel fold and "salad-bowl" shape of GH10 enzymes. In complex structures with xylo-oligosaccharides, seven sugar-binding subsites were found, and many residues responsible for substrate interactions were identified. Site-directed mutagenesis indicated that 6 and 10 amino acid residues were key residues for xylan and cellulose hydrolysis, respectively. The most important residues are centered on subsites -2 and -1 near the cleavage site, whereas residues playing moderate roles could be located at more distal regions of the binding cleft. Manipulating the residues interacting with substrates in the distal regions directly or indirectly improved the activity of CbXyn10C on xylan and cellulose. Most of the key residues for cellulase activity are conserved across GH10 xylanases. Revisiting randomly selected GH10 enzymes revealed unreported cellulase activity, indicating that the dual function may be a more common phenomenon than has been expected.


Asunto(s)
Celulosa/metabolismo , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Firmicutes/enzimología , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Endo-1,4-beta Xilanasas/genética , Hidrólisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Homología de Secuencia , Especificidad por Sustrato
5.
Appl Environ Microbiol ; 81(11): 3823-33, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25819971

RESUMEN

The genome of the thermophilic bacterium Caldicellulosiruptor bescii encodes three multimodular enzymes with identical C-terminal domain organizations containing two consecutive CBM3b modules and one glycoside hydrolase (GH) family 48 (GH48) catalytic module. However, the three proteins differ much in their N termini. Among these proteins, CelA (or C. bescii Cel9A [CbCel9A]/Cel48A) with a GH9/CBM3c binary partner in the N terminus has been shown to use a novel strategy to degrade crystalline cellulose, which leads to its outstanding cellulose-cleaving activity. Here we show that C. bescii Xyn10C (CbXyn10C), the N-terminal GH10 domain from CbXyn10C/Cel48B, can also degrade crystalline cellulose, in addition to heterogeneous xylans and barley ß-glucan. The data from substrate competition assays, mutational studies, molecular modeling, and docking point analyses point to the existence of only one catalytic center in the bifunctional xylanase/ß-glucanase. The specific activities of the recombinant CbXyn10C on Avicel and filter paper were comparable to those of GH9/CBM3c of the robust CelA expressed in Escherichia coli. Appending one or two cellulose-binding CBM3bs enhanced the activities of CbXyn10C in degrading crystalline celluloses, which were again comparable to those of the GH9/CBM3c-CBM3b-CBM3b truncation mutant of CelA. Since CbXyn10C/Cel48B and CelA have similar domain organizations and high sequence homology, the endocellulase activity observed in CbXyn10C leads us to speculate that CbXyn10C/Cel48B may use the same strategy that CelA uses to hydrolyze crystalline cellulose, thus helping the excellent crystalline cellulose degrader C. bescii acquire energy from the environment. In addition, we also demonstrate that CbXyn10C may be an interesting candidate enzyme for biotechnology due to its versatility in hydrolyzing multiple substrates with different glycosidic linkages.


Asunto(s)
Celulosa/metabolismo , Firmicutes/enzimología , Glicósido Hidrolasas/metabolismo , Dominio Catalítico , Firmicutes/genética , Glicósido Hidrolasas/genética , Hidrólisis , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
6.
Bioresour Technol ; 372: 128695, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731612

RESUMEN

The efficient degradation of plant polysaccharides in agricultural waste requires xylanases with high catalytic activity. In this study, the C-terminal proline-rich GH10 xylanase XynA from sheep rumen was investigated using product analysis, structural characterization, truncated and site-directed mutagenesis, molecular dynamics simulation, and application evaluation, revealing that the proline-rich C-terminus contributes to the interaction at the substrate-binding pocket to reduce the binding free energy. Compared to the C-terminally truncated enzyme XynA-Tr, XynA has a more favorable conformation for proton transfer and affinity attack, facilitating the degradation of oligomeric and beechwood xylan without altering the hydrolysis pattern. Moreover, both the reduced sugar yield and weight loss of the pretreated wheat bran, corn cob, and corn stalk hydrolyzed by XynA for 12 h increased by more than 30 %. These findings are important to better understand the relationship between enzyme activities and their terminal regions and suggest candidate materials for lignocellulosic biomass utilization.


Asunto(s)
Endo-1,4-beta Xilanasas , Lignina , Animales , Ovinos , Endo-1,4-beta Xilanasas/metabolismo , Biomasa , Lignina/metabolismo , Polisacáridos , Xilanos/metabolismo
7.
Biotechnol Adv ; 65: 108126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36921877

RESUMEN

The microbial decomposition and utilization of lignocellulosic biomass present in the plant tissues are driven by a series of carbohydrate active enzymes (CAZymes) acting in concert. As the non-catalytic domains widely found in the modular CAZymes, carbohydrate-binding modules (CBMs) are intimately associated with catalytic domains (CDs) that effect the diverse hydrolytic reactions. The CBMs function as auxiliary components for the recognition, adhesion, and depolymerization of the complex substrate mediated by the associated CDs. Therefore, CBMs are deemed as significant biotools available for enzyme engineering, especially to facilitate the enzymatic hydrolysis of dense and insoluble plant tissues to acquire more fermentable sugars. This review aims at presenting the taxonomies and biological properties of the CBMs currently curated in the CAZy database. The molecular mechanisms that CBMs use in assisting the enzymatic hydrolysis of plant polysaccharides and the regulatory factors of CBM-substrate interactions are outlined in detail. In addition, guidelines for the rational designs of CBM-fused CAZymes are proposed. Furthermore, the potential to harness CBMs for industrial applications, especially in enzymatic pretreatment of the recalcitrant lignocellulose, is evaluated. It is envisaged that the ideas outlined herein will aid in the engineering and production of novel CBM-fused enzymes to facilitate efficient degradation of lignocellulosic biomass to easily fermentable sugars for production of value-added products, including biofuels.


Asunto(s)
Lignina , Azúcares , Lignina/metabolismo , Biocombustibles , Hidrólisis , Biomasa , Carbohidratos/química
8.
Bioresour Technol ; 364: 128027, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36174898

RESUMEN

The thermophilic fungus Myceliophthora thermophila as an efficient decomposer secretes various glycoside hydrolases and auxiliary oxidation enzymes to deconstruct cellulose. However, the core enzymes critical for efficient cellulose degradation and their interactions with other cellulolytic enzymes remain unclear. Herein, the transcriptomic analysis of M. thermophila grown on Avicel exhibited that cellulases from GH5_5, GH6 and GH7, and lytic polysaccharide monooxygenases (LPMOs) from AA9 contributed to cellulose degradation. Moreover, the peptide mass fingerprinting analysis of major extracellular proteins and corresponding gene-knockout strains studies revealed that MtCel7A and MtCel5A were the core cellulolytic enzymes. Furthermore, synergistic experiments found that hydrolytic efficiencies of MtCel7A and MtCel5A were both improved by mixture C1/C4 oxidizing MtLPMO9H, but inhibited by C1 oxidizing MtLPMO9E and C4 oxidizing MtLPMO9J respectively. These results demonstrated the potential application of C1/C4 oxidizing LPMOs for future designing novel cellulolytic enzyme cocktails on the efficient conversion of cellulose into biofuels and biochemicals.


Asunto(s)
Oxigenasas de Función Mixta , Sordariales , Oxigenasas de Función Mixta/metabolismo , Glicósido Hidrolasas , Polisacáridos/metabolismo , Celulosa/metabolismo
9.
Bioresour Technol ; 358: 127434, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35680086

RESUMEN

The recalcitrance of cellulosic biomass greatly hinders its enzymatic degradation. Expansins induce cell wall loosening and promote efficient cellulose utilization; however, the molecular mechanism underlying their action is not well understood. In this study, TlEXLX1, a fungal expansin from Talaromyces leycettanus JCM12802, was characterized in terms of phylogeny, synergy, structure, and mechanism of action. TlEXLX1 displayed varying degrees of synergism with commercial cellulase in the pretreatment of corn straw and filter paper. TlEXLX1 binds to cellulose via domain 2, mediated by CH-π interactions with residues Tyr291, Trp292, and Tyr327. Residues Asp237, Glu238, and Asp248 in domain 1 form hydrogen bonds with glucose units and break the inherent hydrogen bonding within the cellulose matrix. This study identified the expansin amino acid residues crucial for cellulose binding, and elucidated the structure and function of expansins in cell wall networks; this has potential applications in biomass utilization.


Asunto(s)
Celulasa , Celulosa , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Celulasa/metabolismo , Celulosa/química , Hidrólisis
10.
Biosens Bioelectron ; 116: 123-129, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-29879538

RESUMEN

Respiration is as one of the most essential physiological signals, which can be used to monitor human healthcare and activities. Herein, we report a flexible, lightweight and highly conductive porous graphene network as the humidity sensor for respiration monitoring. To enhance the sensing performance, the graphene oxide (GO), poly (3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT: PSS) and Ag colloids (AC) were used to modify the porous graphene. The humidity properties of porous based graphene networks have been investigated at different relative humidity (RH). The porous based graphene sensors exhibit excellent capability of monitoring different breathing patterns including mouse and nose respiration, normal and deep respiration. Besides, the signal variations before and after water intake was recorded by the sensor, which demonstrates the ability to monitor water loss during breathing period. Furthermore, the humidity sensor shows the ability to detect physiological activities including skin moisture, speaking and whistle rhythm, which could be a promising electronic for clinical respiration monitoring.


Asunto(s)
Técnicas Biosensibles/instrumentación , Grafito/química , Humedad , Monitoreo Fisiológico/instrumentación , Respiración , Dispositivos Electrónicos Vestibles , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Humanos , Polímeros/química , Poliestirenos/química , Porosidad , Plata/química
11.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 32(3): 292-6, 2014 Jun.
Artículo en Zh | MEDLINE | ID: mdl-25033649

RESUMEN

OBJECTIVE: To compare shear bond strength (SBS) between two types of silicone soft liner and polymethyl methacrylate (PMMA) under the condition of heat curing and room temperature curing. METHODS: A total of 48 PMMA specimens (50 mm x 10 mm x 3 mm) were made by water-bath heating method, and randomly divided into four groups. By using Ufi Gel P (UGP) as soft liner material, group A1 was prepared under heat curing, and group A2 was prepared under room temperature curing. To form the other two groups, Silagum-Comfort (SLC) as soft-liner material was used. Group B1 was prepared under heat curing, and group B2 was prepared under room temperature curing. Shear bond strength (SBS) was tested by using the electronic universal testing machine. The adhesives layer and surface of silastic and PMMA were observed by optical microscope and scanning electron microscopy (SEM). RESULTS: The SBS of groups A1, A2, B1, B2 were (2.39 +/- 0.24), (1.74 +/- 0.27), (3.09 +/- 0.26), and (2.21 +/- 0.29) MPa, respectively. Significant differences were found between A1 and A2, B1 and B2, A1 and B1, and A2 and B2 (P < 0.05). Optical microscope showed numerous bubbles in the cured UGP, and no air bubbles in the SLC. The surface of PMMA was rough. SEM images showed that each group had continual consistent adhesive interface and a whisker hump on the adhesive layer of A2 and B2. CONCLUSION: The SBS ofUGP, SLC, and PMMA achieved minimum clinical standard of 0.44 MPa. The SBS of UGP and PMMA were higher than that of SLC and PMMA. The polymerization method of heat curing was higher than room temperature curing.


Asunto(s)
Alineadores Dentales , Polimetil Metacrilato , Recubrimiento Dental Adhesivo , Dimetilpolisiloxanos , Ensayo de Materiales , Polimerizacion , Elastómeros de Silicona , Siliconas , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA