Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 194(1): 243-257, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37399189

RESUMEN

Plant lignocellulosic biomass, i.e. secondary cell walls of plants, is a vital alternative source for bioenergy. However, the acetylation of xylan in secondary cell walls impedes the conversion of biomass to biofuels. Previous studies have shown that REDUCED WALL ACETYLATION (RWA) proteins are directly involved in the acetylation of xylan but the regulatory mechanism of RWAs is not fully understood. In this study, we demonstrate that overexpression of a Populus trichocarpa PtRWA-C gene increases the level of xylan acetylation and increases the lignin content and S/G ratio, ultimately yielding poplar woody biomass with reduced saccharification efficiency. Furthermore, through gene coexpression network and expression quantitative trait loci (eQTL) analysis, we found that PtRWA-C was regulated not only by the secondary cell wall hierarchical regulatory network but also by an AP2 family transcription factor HARDY (HRD). Specifically, HRD activates PtRWA-C expression by directly binding to the PtRWA-C promoter, which is also the cis-eQTL for PtRWA-C. Taken together, our findings provide insights into the functional roles of PtRWA-C in xylan acetylation and consequently saccharification and shed light on synthetic biology approaches to manipulate this gene and alter cell wall properties. These findings have substantial implications for genetic engineering of woody species, which could be used as a sustainable source of biofuels, valuable biochemicals, and biomaterials.


Asunto(s)
Populus , Populus/genética , Populus/metabolismo , Xilanos/metabolismo , Acetilación , Biomasa , Biocombustibles/análisis , Plantas/metabolismo , Pared Celular/metabolismo , Lignina/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(35): 14253-8, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22893684

RESUMEN

The hemicellulose 4-O-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants. However, the biochemical mechanisms leading to the formation of this polysaccharide and the effects of modulating its structure on the physical properties of the cell wall are poorly understood. We have identified and functionally characterized an Arabidopsis glucuronoxylan methyltransferase (GXMT) that catalyzes 4-O-methylation of the glucuronic acid substituents of this polysaccharide. AtGXMT1, which was previously classified as a domain of unknown function (DUF) 579 protein, specifically transfers the methyl group from S-adenosyl-L-methionine to O-4 of α-D-glucopyranosyluronic acid residues that are linked to O-2 of the xylan backbone. Biochemical characterization of the recombinant enzyme indicates that GXMT1 is localized in the Golgi apparatus and requires Co(2+) for optimal activity in vitro. Plants lacking GXMT1 synthesize glucuronoxylan in which the degree of 4-O-methylation is reduced by 75%. This result is correlated to a change in lignin monomer composition and an increase in glucuronoxylan release during hydrothermal treatment of secondary cell walls. We propose that the DUF579 proteins constitute a previously undescribed family of cation-dependent, polysaccharide-specific O-methyl-transferases. This knowledge provides new opportunities to selectively manipulate polysaccharide O-methylation and extends the portfolio of structural targets that can be modified either alone or in combination to modulate biopolymer interactions in the plant cell wall.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ácido Glucurónico/metabolismo , Metiltransferasas/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Catálisis , Cationes/metabolismo , Pared Celular/enzimología , Éteres/metabolismo , Aparato de Golgi/metabolismo , Lignina/metabolismo , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Mutagénesis/fisiología , Polisacáridos/metabolismo , Estructura Terciaria de Proteína/fisiología , Xilanos/biosíntesis
3.
Proc Natl Acad Sci U S A ; 109(11): 4098-103, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22375033

RESUMEN

The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1(A903V) and CESA3(T942I) in Arabidopsis thaliana. Using (13)C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1(A903V) and CESA3(T942I) displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1(A903V) and CESA3(T942I) have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Celulosa/química , Glucosiltransferasas/química , Glucosiltransferasas/genética , Microfibrillas/química , Mutación/genética , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Celulosa/biosíntesis , Cristalización , Resistencia a Medicamentos/efectos de los fármacos , Genes Dominantes/genética , Glucosiltransferasas/metabolismo , Espectroscopía de Resonancia Magnética , Microfibrillas/efectos de los fármacos , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Transporte de Proteínas/efectos de los fármacos , Quinolinas/química , Quinolinas/farmacología , Relación Estructura-Actividad
4.
Curr Opin Plant Biol ; 11(3): 329-37, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18396092

RESUMEN

Much of what is currently known about the structure, properties and biochemical activities of glycosyl hydrolases (GHs) has resulted from detailed studies of microbial enzymes. Conversely, such information is sparse in the plant GH literature, where the focus has traditionally been on studying expression and biological function. However, the current resurgence of interest in lignocellulosic biofuels is catalyzing new interest in this field, and recent reports suggest that some plant GH families have more in common with their microbial counterparts than was previously suspected. The repertoires of plant GHs, with their associated catalytic activities and polysaccharide binding affinities, may have valuable applications in modifying plant cell wall architecture and in the development and characterization of new bioenergy feedstocks.


Asunto(s)
Celulosa/metabolismo , Glicósido Hidrolasas/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Fuentes de Energía Bioeléctrica , Pared Celular/química , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicósido Hidrolasas/genética , Modelos Biológicos , Proteínas de Plantas/genética
5.
PLoS Negl Trop Dis ; 13(5): e0007352, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31095564

RESUMEN

BACKGROUND: Acanthamoeba castellanii, which causes keratitis and blindness in under-resourced countries, is an emerging pathogen worldwide, because of its association with contact lens use. The wall makes cysts resistant to sterilizing reagents in lens solutions and to antibiotics applied to the eye. METHODOLOGY/PRINCIPAL FINDINGS: Transmission electron microscopy and structured illumination microscopy (SIM) showed purified cyst walls of A. castellanii retained an outer ectocyst layer, an inner endocyst layer, and conical ostioles that connect them. Mass spectrometry showed candidate cyst wall proteins were dominated by three families of lectins (named here Jonah, Luke, and Leo), which bound well to cellulose and less well to chitin. An abundant Jonah lectin, which has one choice-of-anchor A (CAA) domain, was made early during encystation and localized to the ectocyst layer of cyst walls. An abundant Luke lectin, which has two carbohydrate-binding modules (CBM49), outlined small, flat ostioles in a single-layered primordial wall and localized to the endocyst layer and ostioles of mature walls. An abundant Leo lectin, which has two unique domains with eight Cys residues each (8-Cys), localized to the endocyst layer and ostioles. The Jonah lectin and glycopolymers, to which it binds, were accessible in the ectocyst layer. In contrast, Luke and Leo lectins and the glycopolymers, to which they bind, were mostly inaccessible in the endocyst layer and ostioles. CONCLUSIONS/SIGNIFICANCE: The most abundant A. castellanii cyst wall proteins are three sets of lectins, which have carbohydrate-binding modules that are conserved (CBM49s of Luke), newly characterized (CAA of Jonah), or unique to Acanthamoebae (8-Cys of Leo). Cyst wall formation is a tightly choreographed event, in which lectins and glycopolymers combine to form a mature wall with a protected endocyst layer. Because of its accessibility in the ectocyst layer, an abundant Jonah lectin is an excellent diagnostic target.


Asunto(s)
Acanthamoeba castellanii/crecimiento & desarrollo , Acanthamoeba castellanii/metabolismo , Amebiasis/parasitología , Celulosa/metabolismo , Lectinas/metabolismo , Proteínas Protozoarias/metabolismo , Acanthamoeba castellanii/química , Acanthamoeba castellanii/genética , Secuencia de Aminoácidos , Humanos , Queratitis/parasitología , Lectinas/química , Lectinas/genética , Estadios del Ciclo de Vida , Unión Proteica , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Alineación de Secuencia
6.
Methods Enzymol ; 510: 121-39, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22608724

RESUMEN

Structural characterization of oligosaccharide products generated by enzymatic hydrolysis of plant cell wall polysaccharides provides valuable information about the enzyme's activity and substrate specificity. In this chapter, we describe some of the chemical, chromatographic, and spectroscopic methods that we routinely use to isolate and characterize oligosaccharides formed by enzymatic fragmentation of cellulose and xyloglucan. These include techniques to determine glycosyl residue and glycosyl linkage compositions by gas chromatography and mass spectrometry. We also illustrate the use of electrospray ionization with multistage mass spectrometry, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and nuclear magnetic resonance spectroscopy to perform detailed structural analysis of these oligosaccharides.


Asunto(s)
Celulosa/química , Celulosa/metabolismo , Glucanos/química , Glucanos/metabolismo , Xilanos/química , Xilanos/metabolismo , Aspergillus/enzimología , Pared Celular/química , Pared Celular/metabolismo , Celulasa/metabolismo , Cromatografía Liquida/métodos , Cromatografía de Gases y Espectrometría de Masas , Hidrólisis , Espectroscopía de Resonancia Magnética/métodos , Plantas/química , Plantas/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
7.
J Biol Chem ; 282(16): 12066-74, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17322304

RESUMEN

A critical structural feature of many microbial endo-beta-1,4-glucanases (EGases, or cellulases) is a carbohydrate binding module (CBM), which is required for effective crystalline cellulose degradation. However, CBMs are absent from plant EGases that have been biochemically characterized to date, and accordingly, plant EGases are not generally thought to have the capacity to degrade crystalline cellulose. We report the biochemical characterization of a tomato EGase, Solanum lycopersicum Cel8 (SlCel9C1), with a distinct C-terminal noncatalytic module that represents a previously uncharacterized family of CBMs. In vitro binding studies demonstrated that this module indeed binds to crystalline cellulose and can similarly bind as part of a recombinant chimeric fusion protein containing an EGase catalytic domain from the bacterium Thermobifida fusca. Site-directed mutagenesis studies show that tryptophans 559 and 573 play a role in crystalline cellulose binding. The SlCel9C1 CBM, which represents a new CBM family (CBM49), is a defining feature of a new structural subclass (Class C) of plant EGases, with members present throughout the plant kingdom. In addition, the SlCel9C1 catalytic domain was shown to hydrolyze artificial cellulosic polymers, cellulose oligosaccharides, and a variety of plant cell wall polysaccharides.


Asunto(s)
Carbohidratos/química , Celulasa/fisiología , Solanum lycopersicum/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Pared Celular/metabolismo , Celulasa/química , Celulasa/genética , Celulasa/metabolismo , Celulosa/química , Glutatión Transferasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Proteínas Recombinantes de Fusión/química , Homología de Secuencia de Aminoácido , Triptófano/química
8.
Plant Physiol ; 134(2): 758-68, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14730082

RESUMEN

Mixed-linkage (1-->3),(1-->4)-beta-d-glucan is a plant cell wall polysaccharide composed of cellotriosyl and cellotetraosyl units, with decreasingly smaller amounts of cellopentosyl, cellohexosyl, and higher cellodextrin units, each connected by single (1-->3)-beta-linkages. (1-->3),(1-->4)-beta-Glucan is synthesized in vitro with isolated maize (Zea mays) Golgi membranes and UDP-[(14)C]d-glucose. The (1-->3),(1-->4)-beta-glucan synthase is sensitive to proteinase K digestion, indicating that part of the catalytic domain is exposed to the cytoplasmic face of the Golgi membrane. The detergent [3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid] (CHAPS) also lowers (1-->3),(1-->4)-beta-glucan synthase activity. In each instance, the treatments selectively inhibit formation of the cellotriosyl units, whereas synthesis of the cellotetraosyl units is essentially unaffected. Synthesis of the cellotriosyl units is recovered when a CHAPS-soluble factor is permitted to associate with Golgi membranes at synthesis-enhancing CHAPS concentrations but lost if the CHAPS-soluble fraction is replaced by fresh CHAPS buffer. In contrast to other known Golgi-associated synthases, (1-->3),(1-->4)-beta-glucan synthase behaves as a topologic equivalent of cellulose synthase, where the substrate UDP-glucose is consumed at the cytosolic side of the Golgi membrane, and the glucan product is extruded through the membrane into the lumen. We propose that a cellulose synthase-like core catalytic domain of the (1-->3),(1-->4)-beta-glucan synthase synthesizes cellotetraosyl units and higher even-numbered oligomeric units and that a separate glycosyl transferase, sensitive to proteinase digestion and detergent extraction, associates with it to add the glucosyl residues that complete the cellotriosyl and higher odd-numbered units, and this association is necessary to drive polymer elongation.


Asunto(s)
Celulosa/análogos & derivados , Glucosiltransferasas/biosíntesis , Aparato de Golgi/enzimología , Glicoproteínas de Membrana/biosíntesis , Zea mays/enzimología , Radioisótopos de Carbono/metabolismo , Celulosa/antagonistas & inhibidores , Celulosa/biosíntesis , Ácidos Cólicos/farmacología , Detergentes/farmacología , Glucosiltransferasas/antagonistas & inhibidores , Polímeros/química , Polímeros/metabolismo , Tetrosas/biosíntesis , Triosas/biosíntesis , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA