Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Environ Manage ; 356: 120529, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490006

RESUMEN

Accidental diesel spills can occur in marine environments such as harbors, leading to adverse effects on the environmental compartment and humans. This study proposes the surgical mask as an affordable and sustainable adsorbent for the remediation of diesel-contaminated seawater to cope with the polymeric waste generated monthly in hospital facilities. This approach can also be helpful considering a possible future pandemic, alleviating the pressure on the waste management system by avoiding improper mask incineration and landfilling, as instead occurred during the previous COVID-19. Batch adsorption-desorption experiments revealed a complete diesel removal from seawater after 120 min with the intact laceless mask, which showed an adsorption capacity of up to 3.43 g/g. The adsorption curve was better predicted via Weber and Morris's kinetic (R2 = 0.876) and, in general, with Temkin isotherm (R2 = 0.965-0.996) probably due to the occurrence of chemisorption with intraparticle diffusion as one of the rates-determining steps. A hysteresis index of 0.23-0.36 was obtained from the desorption isotherms, suggesting that diesel adsorption onto surgical masks was faster than the desorption mechanism. Also, the effect of pH, ionic strength and temperature on diesel adsorption was examined. The results from the reusability tests indicated that the surgical mask can be regenerated for 5 consecutive cycles while decreasing the adsorption capacity by only approximately 11%.


Asunto(s)
Administración de Residuos , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Polímeros , Agua de Mar , Termodinámica , Contaminantes Químicos del Agua/análisis
2.
Environ Res ; 215(Pt 1): 114180, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36057335

RESUMEN

In the present study, surface-active compounds (SAC) were extracted from biosolids using an alkaline treatment process. They were tested for their remediation efficiency of crude oil-contaminated sediment soil and was compared with Triton x-100. The SAC exhibited a similar soil washing efficiency to that of the commercial Triton x-100, and under the optimized soil washing parameters, SAC exhibited a maximum of 91% total polycyclic aromatic hydrocarbons removal. Further, on analysing the toxicity of the soil residue after washing, it was observed that SAC from biosolids washed soil exhibited an average of 1.5-fold lesser toxicity compared to that of Triton x-100 on different test models-earthworm, a monocot, and dicot plants. The analysis of the key soil parameters revealed that the commercial surfactant reduced the soil organic matter and porosity by an average of 1.3-fold compared to SAC. Further, the ability of surfactants to induce toxicity was confirmed by the adsorption of the surfactants on the surface of the soil particles which was in the order of Triton x-100 > SAC. Thus, this study suggests that SAC can be applied as an effective bioremediation approach for contaminated soil for a greener and sustainable ecosystem.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Biosólidos , Ecosistema , Octoxinol , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Contaminantes del Suelo/análisis , Tensoactivos/análisis
3.
Environ Res ; 215(Pt 2): 114198, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36063912

RESUMEN

In this "plastic era" with the increased use of plastic in day today's life the accumulation of its degraded products like microplastics or plastic additives such as Bisphenol A(BPA) is also increasing. BPA is an endocrine-disrupting chemical used as a plasticizing agent in clear plastic, building materials, coatings, and epoxy resin. Several enzymes including laccases and lipases have been studied for the reduction of BPA toxicity. Over the decades of encountering these toxicants, microorganisms have evolved to degrade different classes of plastic additives. Since the degradation of BPA is a long process thus meta-omics approaches have been employed to identify the active microbiota and microbial dynamics involved in the mitigation of BPA. It is also necessary to investigate the impact of processing activities on transit of BPA in food items and to limit its entrance in food world. This review summarizes a comprehensive overview on BPA sources, toxicity, bio-based mitigation approaches along with a deeper understanding of multi-omics approaches for its reduction and risk analysis. Knowledge gaps and opportunities have been comprehensively compiled that would aid the state-of-the-art information in the available literature for the researchers to further address this issue.


Asunto(s)
Disruptores Endocrinos , Plásticos , Compuestos de Bencidrilo/análisis , Disruptores Endocrinos/análisis , Disruptores Endocrinos/toxicidad , Resinas Epoxi , Microplásticos , Fenoles , Medición de Riesgo
4.
Mar Drugs ; 20(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36286425

RESUMEN

Microalgae and cyanobacteria are photosynthetic microorganisms' sources of renewable biomass that can be used for bioplastic production. These microorganisms have high growth rates, and contrary to other feedstocks, such as land crops, they do not require arable land. In addition, they can be used as feedstock for bioplastic production while not competing with food sources (e.g., corn, wheat, and soy protein). In this study, we review the macromolecules from microalgae and cyanobacteria that can serve for the production of bioplastics, including starch and glycogen, polyhydroxyalkanoates (PHAs), cellulose, polylactic acid (PLA), and triacylglycerols (TAGs). In addition, we focus on the cultivation of microalgae and cyanobacteria for wastewater treatment. This approach would allow reducing nutrient supply for biomass production while treating wastewater. Thus, the combination of wastewater treatment and the production of biomass that can serve as feedstock for bioplastic production is discussed. The comprehensive information provided in this communication would expand the scope of interdisciplinary and translational research.


Asunto(s)
Cianobacterias , Microalgas , Polihidroxialcanoatos , Microalgas/metabolismo , Biomasa , Aguas Residuales , Proteínas de Soja/metabolismo , Cianobacterias/metabolismo , Celulosa , Almidón/metabolismo , Triglicéridos/metabolismo , Glucógeno/metabolismo , Biocombustibles
5.
Environ Res ; 201: 111585, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34181925

RESUMEN

Iron oxide nanoparticles synthesis is an expanding area of research due of their magnetic properties and possible applications in several novel technologies. FeONPs are indispensable in the biomedical field for diagnosis, treatments and drug delivery and in bioremediation applications. The synthesis route of nanoparticles is a major concern because biological methods are eco-friendly, and chemical methods are considered toxic. The objective of this study is to synthesize FeONPs by two different methods and to compare their properties and efficiency in applications. FeONPs were synthesized and characterized by microscopic and various spectroscopic techniques. The synthesized FeONPs were screened for their cytotoxic activity on PBMCs using MTT assay and found to exhibit good biocompatibility. Moreover, the GS FeONPs exhibited potential antibacterial activities and meanwhile showed less toxicity in brine shrimp lethality assay. Hence, these nanoparticles are biocompatible, environmentally safe and can be utilized in many medical applications.


Asunto(s)
Tecnología Química Verde , Nanopartículas Magnéticas de Óxido de Hierro , Materiales Biocompatibles , Nanopartículas del Metal
6.
Chemosphere ; 351: 141208, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219986

RESUMEN

Plastics are indispensable in modern society but also pose a persistent threat to the environment. In particular, microplastics (MPs) have a substantial environmental impact on ecosystems. Municipal solid waste landfill leachates are a source of MPs, but leakage of MPs from leachates has only been reported in a few studies. As a modern city, Hong Kong has a remarkably high population density and a massive plastic waste generation. However, it depends on conventional landfilling for plastic waste management and traditional thermal ammonia stripping for leachate treatment. Yet, the MP leakage from landfill leachates in Hong Kong has not been disclosed. This is the first study that aimed to identify, quantify, and characterise MPs in raw and treated leachates, respectively, from major landfill sites in Hong Kong. The concentrations of MPs varied from 49.0 ± 24.3 to 507.6 ± 37.3 items/L among the raw leachate samples, and a potential correlation was found between the concentration of MPs in the raw leachate sample from a given landfill site and the annual leachate generation of the site. Most MPs were 100-500 µm fragments or filaments and were transparent or yellow. Regarding the polymeric materials among the identified MPs, poly(ethylene terephthalate) and polyethylene were the most abundant types, comprising 45.30% and 21.37% of MPs, respectively. Interestingly, leachates treated by ammonia stripping contained higher concentrations of MPs than raw leachate samples, which demonstrated that the traditional treatment process may not be sufficient regarding the removal of emerging pollutants, such as MPs. Overall, our findings provide a more comprehensive picture of the pollution of MPs in landfill leachates in Hong Kong and highlight the urgent need for adopting the consideration of MPs into the conventional mindset of waste management systems in Hong Kong.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Residuos Sólidos/análisis , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Hong Kong , Amoníaco , Ecosistema , Instalaciones de Eliminación de Residuos , China
7.
Chemosphere ; 331: 138776, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37100247

RESUMEN

Plastics have become an essential part of life. When it enters the environment, it migrates and breaks down to form smaller size fragments, which are called microplastics (MPs). Compared with plastics, MPs are detrimental to the environment and pose a severe threat to human health. Bioremediation is being recognized as the most environmentally friendly and cost-effective degradation technology for MPs, but knowledge about the biodegradation of MPs is limited. This review explores the various sources of MPs and their migration behavior in terrestrial and aquatic environments. Among the existing MPs removal technologies, biodegradation is considered to be the best removal strategy to alleviate MPs pollution. The biodegradation potential of MPs by bacteria, fungi and algae is discussed. Biodegradation mechanisms such as colonization, fragmentation, assimilation, and mineralization are presented. The effects of MPs characteristics, microbial activity, environmental factors and chemical reagents on biodegradation are analyzed. The susceptibility of microorganisms to MPs toxicity might lead to decreased degradation efficiency, which is also elaborated. The prospects and challenges of biodegradation technologies are discussed. Eliminating prospective bottlenecks is necessary to achieve large-scale bioremediation of MPs-polluted environment. This review provides a comprehensive summary of the biodegradability of MPs, which is crucial for the prudent management of plastic waste.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Biodegradación Ambiental , Estudios de Factibilidad , Estudios Prospectivos , Contaminantes Químicos del Agua/análisis
8.
Environ Pollut ; 325: 121426, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36907239

RESUMEN

Anaerobic digestion (AD) has emerged as a promising technology for diverting the organic waste from the landfills along with the production of clean energy. AD is a microbial-driven biochemical process wherein the plethora of microbial communities participate in converting the putrescible organic matter into biogas. Nevertheless, the AD process is susceptible to the external environmental factors such as presence of physical (microplastics) and chemical (antibiotics, pesticides) pollutants. The microplastics (MPs) pollution has received recent attention due to the increasing plastic pollution in terrestrial ecosystems. This review was aimed for holistic assessment of impact of MPs pollution on AD process to develop efficient treatment technology. First, the possible pathways of MPs entry into the AD systems were critically evaluated. Further, the recent literature on the experimental studies pertaining to the impact of different types of MPs at different concentrations on the AD process was reviewed. In addition, several mechanisms such as direct exposure of MPs on the microbial cells, indirect impact of MPs through the leaching of toxic chemicals and reactive oxygen species (ROS) formation on AD process were elucidated. Besides, the risk possessed by the increase of antibiotic resistance genes (ARGs) after the AD process due to the MPs stress on microbial communities were discussed. Overall, this review deciphered the severity of MPs pollution on AD process at different levels.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/toxicidad , Ecosistema , Anaerobiosis , Contaminación Ambiental , Contaminantes Químicos del Agua/análisis
9.
Sci Total Environ ; 823: 153667, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131253

RESUMEN

Algal culturing in photobioreactors for biofuel and other value-added products is a challenge globally specifically due to expensive closed or open photobioreactors associated with the high cost, problems of water loss and contamination. Among the wide varieties of microalgae, diatoms have come out as potential source for crude oil in the form of Diafuel™ (biofuel from diatoms). However, culturing diatoms at large scale hypothesized as diatom solar panels for biofuel production is still facing a need for facile and economical production of value-added products. The aim of this work was to culture diatom (microalgae) in a closed system by sealing the reactor rim tightly with very cheap priced and used plastic bubble wrap material which is generally discarded in a lodging and transportation of goods. To optimize it, different plastic wraps discarded from a plastic industry were tested first for their permeability to gases and impermeability to water loss. It was found that among different varieties of plastic bubble wraps, low density polyethylene (LDPE) bubble wrap material which was used to seal glass containers as photobioreactors allowed harvest of maximum Diafuel™ (37%), lipid (35 µgmL-1), highest cell count (1152 × 102 cells mL-1), maximum CO2 absorbance (0.084) with almost no water loss and nutrient uptake for 40 days of experiments. This was due to its permeability to gases and impermeability to water. To check usability of such LDPE bubble wrap on other microalgae it was therefore tested on the red-green microalgae Haematococcus pluvialis, which showed scope to be scaled up for astaxanthin production using discarded bubble wrap packing material. This study thus would open up a new way for decreasing plastic disposal and with reuse for sustainable development and application of diatom in biofuel production which could find applications in environmental and industrial sectors.


Asunto(s)
Diatomeas , Microalgas , Biocombustibles , Biomasa , Fotobiorreactores , Plásticos
10.
Chemosphere ; 301: 134747, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35490749

RESUMEN

Membrane based filtration is one of the promising technologies for rehabilitation of wastewater streams for reuse and recycle. Many advancements have emerged with the use of novel materials and innovative integrated technologies. The present investigation focuses on the treatment methods based on submerged and stages systems of membranes for water purification. Ceramic, polymeric and mixed matrix type of membranes fabricated for specific type of effluents, their modification methods for accelerating the rejection efficiency, permeability, durability, stability and antifouling properties are detailed in this review. Graphene oxide is the most considered membrane material for adsorption purposes as it exhibits larger surface area, abundant functional groups contain oxygen and has good supply of ligands which is responsible in metal adsorption as it enhances electrostatic interaction by bonding metal ions with graphene oxide nanosheets. Energy derivation in terms of biogas production was also reported in some integrated methods. In many cases, embedded nanomaterial matrices yielded maximum efficiencies in both the submerged and staged operations. However, submerged type of membranes are reported more than the staged type due to simpler configuration with relatively lesser equipment, operational and maintenance issues. In treatment of a low strength wastewater, aluminum oxide based membrane in fluidized bed assembly was reported to yield promising results with reduced power requirement.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Filtración , Membranas Artificiales , Aguas Residuales , Purificación del Agua/métodos
11.
Bioresour Technol ; 361: 127650, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35907601

RESUMEN

Food is an essential commodity for the survival of any form of life on earth. Yet generation of plethora of food waste has significantly elevated the global concern for food scarcity, human and environment deterioration. Also, increasing use of polymers derived from petroleum hydrocarbons has elevated the concerns towards the depletion of this non-renewable resource. In this review, the use of waste food for the production of bio-polymers and their associated challenges has been thoroughly investigated using scientometric analysis. Various categories of food waste including fruit, vegetable, and oily waste can be employed for the production of different biopolymers including polyhydroxyalkanoates, starch, cellulose, collagen and others. The advances in the production of biopolymers through chemical, microbial or enzymatic process that increases the acceptability of these biopolymers has been reviewed. The comprehensive compiled information may assist researchers for addressing and solving the issues pertaining to food wastage and fossil fuel depletion.


Asunto(s)
Polihidroxialcanoatos , Eliminación de Residuos , Biopolímeros , Celulosa , Alimentos , Humanos
12.
Bioengineered ; 13(5): 12823-12833, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35609323

RESUMEN

Nanocellulose are nano-sized components which are biodegradable, biocompatible and renewable. It offers mechanical strength and chemical stability in plants and bacteria. The environmental contamination is reduced by employing various bioremediation techniques which usesmicroorganisms like algae, bacteria and fungi as bio-adsorbents. The bio adsorbent property of nanocellulose contribute more for the bioremediation methods and the detailed study of its mechanism and application is essential which is discussed here. The mechanism happening between the contaminant and nanocellulose adsorbent should be explored in detail in order to develop effective new bioremediation strategies. Nanocellulose structural functionalization helps to modify the nanocellulose structure based on which it can be utilized for specific functions. Exploring the mechanisms that contribute to the implementation of nanocellulose in tissue engineering helps for further developments and advancement in the biomedical application of nanocellulose. Not much studies are available that elucidate and study the basic steps involved in the biomedical and environmental usage of nanocellulose. This review has focussed on the basic mechanisms involved in the use of nanocellulose in tissue engineering and bioremediation processes.


Asunto(s)
Nanoestructuras , Ingeniería de Tejidos , Materiales Biocompatibles/química , Biodegradación Ambiental , Celulosa , Nanoestructuras/química
13.
Bioresour Technol ; 351: 127012, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35306132

RESUMEN

This research work aims to valorize lignocellulosic biorefinery sludge with genetically engineered Trichoderma atroviride for simultaneous removal of organic contaminants, fermentation inhibitors, and lignocellulolytic enzyme cocktail production. Upon analysis, three phenolic compounds (42.6 ± 3.6 µg/g), two polycyclic aromatic hydrocarbons (0.42 ± 0.06 µg/g) and five fermentation inhibitors (2.5 ± 0.3 mg/g) were detected in the sludge. Bioaugmentation of sludge with 72 h-old T. atroviride (5%) results in the production of cellulase (21 U/g), xylanase (84 U/g), laccase (20 U/g), lignin peroxidase (14 U/g) and aryl alcohol oxidase (116 U/g), along with the concomitant removal of organic contaminants (phenol, 2, 4-dinitrophenol, pentchlorophenol, phenanthrene, benzo(a)pyrene) and fermentation inhibitors (furfural, 5-hydroxymethylfurfural, levulinic acid, ferulic acid, and catechol). Subsequently, the enrichment of sludge with nutrients and rhamnolipids enhanced the enzyme production by 5-6-fold and resulted in the removal of 85-95% of organic contaminants and fermentation inhibitors, which constitutes an eco-friendly process.


Asunto(s)
Celulasa , Aguas del Alcantarillado , Celulasa/metabolismo , Fermentación , Lacasa/metabolismo , Lignina/metabolismo
14.
Chemosphere ; 286(Pt 2): 131824, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34388872

RESUMEN

The efficacious application of lignocellulosic biomass for the new valuable chemicals generation curbs the excessive dependency on fossil fuels. Among the various techniques available, pyrolysis has garnered much attention for conversion of lignocellulosic biomass (encompasses cellulose, hemicellulose and lignin components) into product of solid, liquid and gases by thermal decomposition in an efficient manner. Pyrolysis conversion mechanism can be outlined as formation of char, depolymerisation, fragmentation and other secondary reactions. This paper gives a deep insight about the pyrolytic behavior of the lignocellulosic components accompanied by its by-products. Also several parameters such as reaction environment, temperature, residence time and heating rate which has a great impact on the pyrolysis process are also elucidated in a detailed manner. In addition the environmental and economical facet of lignocellulosic biomass pyrolysis for commercialization at industrial scale is critically analyzed. This article also illustrates the prevailing challenges and inhibition in implementing lignocellulosic biomass based pyrolysis with possible solution.


Asunto(s)
Biocombustibles , Pirólisis , Biomasa , Calor , Lignina
15.
Bioengineered ; 13(2): 2139-2172, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35034543

RESUMEN

Interest in functional food, such as non-digestible prebiotic oligosaccharides is increasing day by day and their production is shifting toward sustainable manufacturing. Due to the presence of high carbohydrate content, lignocellulosic biomass (LCB) is the most-potential, cost-effective and sustainable substrate for production of many useful products, including lignocellulose-derived prebiotic oligosaccharides (LDOs). These have the same worthwhile properties as other common oligosaccharides, such as short chain carbohydrates digestible to the gut flora but not to humans mainly due to their resistance to the low pH and high temperature and their demand is constantly increasing mainly due to increased awareness about their potential health benefits. Despite several advantages over the thermo-chemical route of synthesis, comprehensive and updated information on the conversion of lignocellulosic biomass to prebiotic oligomers via controlled enzymatic saccharification is not available in the literature. Thus, the main objective of this review is to highlight recent advancements in enzymatic synthesis of LDOs, current challenges, and future prospects of sustainably producing prebiotic oligomers via enzymatic hydrolysis of LCB substrates. Enzyme reaction engineering practices, custom-made enzyme preparations, controlled enzymatic hydrolysis, and protein engineering approaches have been discussed with regard to their applications in sustainable synthesis of lignocellulose-derived oligosaccharide prebiotics. An overview of scale-up aspects and market potential of LDOs has also been provided.


Asunto(s)
Biomasa , Microbioma Gastrointestinal/efectos de los fármacos , Lignina , Oligosacáridos , Prebióticos , Humanos , Lignina/química , Lignina/uso terapéutico , Oligosacáridos/química , Oligosacáridos/uso terapéutico
16.
Bioresour Technol ; 360: 127576, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35792329

RESUMEN

Ozone is a powerful oxidative gas widely used as a green pretreatment to enhance the delignification of cereal straws. Urea pretreatment can enrich straws with nitrogen to make them more accessible to anaerobic microorganisms. This study aimed to evaluate the effect of ozone-urea pretreatment on the digestibility of wheat straw (i.e., physicochemical, nitrogen enrichment, gas production, nutritional value, and surface chemistry). The results of ozone-urea pretreatment were compared with non-pretreated, ozone-pretreated, and urea-pretreated samples. This pretreatment method outperformed the other methods in terms of digestibility metrics. The ozone-urea pretreatment resulted in a 50% reduction in lignin, a 4.2 times increase in crude protein, a 22.5% increase in bonded organic-N, a 2 times increase in 24 h-gas production, and a 43.67% increase in total digestible nutrients compared to the non-pretreated sample. Based on the total digestible nutrients index, one-tonne ozone-urea-pretreated straw would be 70.6 USD cheaper than the non-pretreated one.


Asunto(s)
Ozono , Lignina/química , Nitrógeno/metabolismo , Ozono/química , Triticum/química , Urea/metabolismo , Urea/farmacología
17.
Bioresour Technol ; 344(Pt B): 126292, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34748984

RESUMEN

Cellulosic ethanol production has received global attention to use as transportation fuels with gasoline blending virtue of carbon benefits and decarbonization. However, due to changing feedstock composition, natural resistance, and a lack of cost-effective pretreatment and downstream processing, contemporary cellulosic ethanol biorefineries are facing major sustainability issues. As a result, we've outlined the global status of present cellulosic ethanol facilities, as well as main roadblocks and technical challenges for sustainable and commercial cellulosic ethanol production. Additionally, the article highlights the technical and non-technical barriers, various R&D advancements in biomass pretreatment, enzymatic hydrolysis, fermentation strategies that have been deliberated for low-cost sustainable fuel ethanol. Moreover, selection of a low-cost efficient pretreatment method, process simulation, unit integration, state-of-the-art in one pot saccharification and fermentation, system microbiology/ genetic engineering for robust strain development, and comprehensive techno-economic analysis are all major bottlenecks that must be considered for long-term ethanol production in the transportation sector.


Asunto(s)
Biocombustibles , Etanol , Biomasa , Biotecnología , Fermentación , Hidrólisis , Lignina/metabolismo
18.
Chemosphere ; 288(Pt 2): 132589, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34678344

RESUMEN

Photosynthetic microbial fuel cells (PMFCs) with microalgae have huge potential for treating wastewater while simultaneously converting light energy into electrical energy. The efficiency of such cells directly depends on algal growth, which depends on light intensity. Higher light intensity results in increased potential as well as enhancement in generation of biomass rich in biopolymers. Such biopolymers are produced either by microbes at anode and algae at cathode or vice versa. The biopolymers recovered from these biological sources can be added in wastewater alone or in combination with nanomaterials to act as nanoadsorbents. These nanoadsorbents further increase the efficiency of PMFC by removing the pollutants like metals and dyes. In this review firstly the effect of different light intensities on the growth of microalgae, importance of diatoms in a PMFC and their impact on PMFCs efficiencies have been narrated. Secondly recovery of biopolymers from different biological sources and their role in removal of metals, dyes along with their impact on circular bioeconomy have been discussed. Thereafter bottlenecks and future perspectives in this field of research have been narrated.


Asunto(s)
Fuentes de Energía Bioeléctrica , Contaminantes Ambientales , Microalgas , Biomasa , Biopolímeros
19.
Bioresour Technol ; 363: 127831, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36029979

RESUMEN

The discharged saline wastewater has severely influenced the aquatic environment as the treatment performance of many wastewater treatment techniques is limited. In addition, the sources of saline wastewater are also plentiful from agricultural and various industrial fields such as food processing, tannery, pharmaceutical, etc. Although high salinity levels negatively impact the performance of both physicochemical and biological processes, membrane bioreactor (MBR) processes are considered as a potential technology to treat saline wastewater under different salinity levels depending on the adaption of the microbial community. Therefore, this study aims to systematically review the application of MBR widely used in the saline wastewater treatment from the perspectives of microbial structure and treatment efficiencies. At last, the concept of carbon dioxide capture and storage will be proposed for the MBR-treating saline wastewater technologies and considered toward the circular economy with the target of zero emission.


Asunto(s)
Aguas Residuales , Purificación del Agua , Reactores Biológicos , Dióxido de Carbono , Membranas Artificiales , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Purificación del Agua/métodos , Industria Farmacéutica
20.
Bioresour Technol ; 347: 126698, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35026424

RESUMEN

Improper use of conventional plastics poses challenges for sustainable energy and environmental protection. Algal derivatives have been considered as a potential renewable biomass source for bioplastic production. Algae derivatives include a multitude of valuable substances, especially starch from microalgae, short-chain length polyhydroxyalkanoates (PHAs) from cyanobacteria, polysaccharides from marine and freshwater macroalgae. The algae derivatives have the potential to be used as key ingredients for bioplastic production, such as starch and PHAs or only as an additive such as sulfated polysaccharides. The presence of distinctive functional groups in algae, such as carboxyl, hydroxyl, and sulfate, can be manipulated or tailored to provide desirable bioplastic quality, especially for food, pharmaceutical, and medical packaging. Standardizing strains, growing conditions, harvesting and extracting algae in an environmentally friendly manner would be a promising strategy for pollution control and bioplastic production.


Asunto(s)
Microalgas , Polihidroxialcanoatos , Algas Marinas , Biomasa , Plásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA