Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Soft Matter ; 16(43): 9964-9974, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33034602

RESUMEN

In this comprehensive study, the interaction of human serum albumin (HSA) with poly(acrylic acid) (PAA) was explored using small angle X-ray scattering (SAXS) combined with chromatography. The results revealed the formation of a complex between HSA macromolecules and PAA chains but solely under some specific conditions of the ionic strength and pH of the medium. In fact, this binding was found to take place only at pH close to 5 and at low ionic strength (0.15 M). Otherwise, for a higher pH and a salt concentration of 0.75 M the HSA-PAA complex tends to dissociate completely showing the reversibility of the complexation. The assessment of the influence of the HSA/PAA molar ratio on the radius of gyration of the complex suggests that 4 HSA molecules could bind to each 100 kDa PAA chain. In addition, the Porod volume evaluation for the same range of the HSA/PAA ratio confirms this assumption. Finally, an all-atom SAXS modelling study using the BUNCH program was conducted to find a compatible model that fits the HSA-PAA complex scattering data. This model allows us to portray the HSA/PAA complex as a pearl-necklace assembly with 4 HSA molecules on the 100 kDa PAA chain.


Asunto(s)
Albúmina Sérica Humana , Resinas Acrílicas , Humanos , Concentración de Iones de Hidrógeno , Polielectrolitos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Rayos X
2.
Langmuir ; 35(5): 1727-1739, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29925240

RESUMEN

Poly(ethylene terephtalate) (PET)-based materials face general biofouling issues that we addressed by grafting a copolymer of glycidyl methacrylate and sulfobetaine methacrylate, poly(GMA- r-SBMA). The grafting procedure involved a dip-coating step followed by UV-exposure and led to successful grafting of the copolymer as evidenced by X-ray photoelectron spectroscopy and zeta potential measurements. It did not modify the pore size nor the porosity of the PET membranes. In addition, their surface hydrophilicity was considerably improved, with a water contact angle falling to 30° in less than 20 s and 0° in less than 1 min. The effect of copolymer concentration in the coating bath (dip-coating procedure) and UV exposure time (UV step) were scrutinized during biofouling studies involving several bacteria such as Escherichia coli and Stenotrophomonas maltophilia, but also whole blood and HT1080 fibroblasts cells. The results indicate that if all conditions led to improved biofouling mitigation, due to the efficiency of the zwitterionic copolymer and grafting procedure, a higher concentration (15 mg/mL) and longer UV exposure time (at least 10 min) enhanced the grafting density which reflected on the biofouling results and permitted a better general biofouling control regardless of the nature of the biofoulant (bacteria, blood cells, fibroblasts).


Asunto(s)
Tereftalatos Polietilenos/química , Adhesión Bacteriana/efectos de los fármacos , Betaína/análogos & derivados , Betaína/síntesis química , Betaína/química , Incrustaciones Biológicas/prevención & control , Células Sanguíneas/efectos de los fármacos , Línea Celular Tumoral , Compuestos Epoxi/síntesis química , Compuestos Epoxi/química , Escherichia coli/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/síntesis química , Metacrilatos/química , Tereftalatos Polietilenos/síntesis química , Stenotrophomonas maltophilia/efectos de los fármacos
3.
Langmuir ; 33(9): 2460-2471, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28177247

RESUMEN

We present a method for surface modification by thermal-evaporation self-assembling of poly(3-hydroxybutyrate) (PHB) fibrous membranes with a copolymer of hydrophobic octadecyl acrylate repeat units and hydrophilic zwitterionic 4-vinylpyridine blocks, zP(4VP-r-ODA), in view of controlling biofoulant-fiber interactions. PHB is of interest as a material for bioscaffolding, but its disadvantage is its hydrophobicity, which leads to unwanted interactions with proteins, blood cells, or bacteria. Surface modification of electrospun PHB fibers addresses this issue because the hydrophilicity of the membranes is improved, leading to a significant reduction in bovine serum albumin (92%), lysozyme (73%), and fibrinogen (50%) adsorption. From a coating density of 0.78 mg/cm2, no bacteria interacted with the fibers, and from 1.13 mg/cm2, excellent hemocompatibility of membranes was measured from thrombocytes, erythrocytes, leukocytes, and whole blood attachment tests. Additionally, HT-1080 fibroblasts were observed to develop in contact with the fibers after 3-7 days of incubation (cell density up to 329 ± 16 cells/mm2), suggesting that zP(4VP-r-ODA) provides an adequate humid environment for their growth. Providing an effective control of the surface chemistry and of the coating density, the association of PHB and zP(4VP-r-ODA) can promote the growth of fibroblasts, still maintaining resistance to unwanted biofoulants, and appears to be a promising composite material for tissue engineering.


Asunto(s)
Plaquetas/citología , Eritrocitos/citología , Fibroblastos/citología , Hidroxibutiratos/química , Leucocitos/citología , Polímeros/química , Adsorción , Ingeniería Celular , Fibrinógeno , Voluntarios Sanos , Humanos , Muramidasa , Tamaño de la Partícula , Prohibitinas , Albúmina Sérica Bovina , Propiedades de Superficie
4.
Langmuir ; 33(38): 9822-9835, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28830143

RESUMEN

Titanium and stainless steel materials are widely used in numerous devices or in custom parts for their excellent mechanical properties. However, their lack of biocompatibility seriously limits their usage in the biomedical field. This study focuses on the grafting of triblock copolymers on titanium and stainless steel metal susbtrates for improving their general biofouling resistance. The series of copolymers that we designed is composed of two blocks of zwitterionic sulfobetaine (SBMA) monomers and one block of glycidyl methacrylate (GMA). The number of repeat units forming each block, n, was finely tuned and controlled to 25, 50, 75, or 100, permitting regulation of the grafting thickness, the morphology, and the dependent properties such as the surface hydrophilicity and biofouling resistance. It was shown that the copolymer possessing n = 50 repeat units in each block, corresponding to a molecular weight of about 15.2 kDa, led to the best nonfouling properties, assessed using plasma proteins, blood cells, fibroblasts cells, and various bacteria. This was explained by an optimized grafting degree and chain organization of the copolymer. Lower value (n = 25) and higher values (n = 75, 100) led to low surface coverage and the formation of aggregates, respectively. The best copolymer was grafted onto scalpels (steel) and dental roots (titanium), and antifouling properties demonstrated using Escherichia coli and HT1080 cells. Results of this work show that this unique triblock copolymer holds promise as a potential material for surface modification of biomedical metallic devices, provided a fine-tuning of the blocks organization and length.

5.
Langmuir ; 33(8): 1914-1926, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28147481

RESUMEN

Cationic vectors are ideal candidates for gene delivery thanks to their capability to carry large gene inserts and their scalable production. However, their cationic density gives rise to high cytotoxicity. We present the proper designed core-shell polyplexes made of either poly(ethylene imine) (PEI) or poly(2-dimethylamino ethyl methacrylate) (PDMAEMA) as the core and zwitterionic poly(acrylic acid)-block-poly(sulfobetaine methacrylate) (PAA-b-PSBMA) diblock copolymer as the shell. Gel retardation and ethidium bromide displacement assays were used to determine the PEI/DNA or PDMAEMA/DNA complexation. At neutral pH, the copolymer serves as a protective shell of the complex. As PSBMA is a nonfouling block, the shell reduced the cytotoxicity and enhanced the hemocompatibility (lower hemolysis activity, longer plasma clotting time) of the gene carriers. PAA segments in the copolymer impart pH sensitivity by allowing deshielding of the core in acidic solution. Therefore, the transfection efficiency of polyplexes at pH 6.5 was better than at pH 7.0, from ß-galactosidase assay, and for all PAA-b-PSBMA tested. These results were supported by more favorable physicochemical properties in acidic solution (zeta potential, particle size, and interactions between the polymer and DNA). Thus, the results of this study offer a potential route to the development of efficient and nontoxic pH-sensitive gene carriers.


Asunto(s)
Polímeros/química , ADN , Técnicas de Transferencia de Gen , Concentración de Iones de Hidrógeno , Iminas/química , Metacrilatos/química , Nylons/química , Polietilenos/química
6.
Langmuir ; 31(9): 2861-9, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25680392

RESUMEN

We report a novel biomacromolecular formula for the design of hemocompatible gel interfaces of N-isopropylacrylamide (NIPAAm) and mixed-charge pairs of [2-(methacryloyloxy)ethyl]trimethylammonium (TMA) and 3-sulfopropyl methacrylate (SA) with overall electrical neutrality. The study stresses on how well-defined compositions of nonionic NIPAAm and pseudozwitterionic TMA/SA in the poly(NIPAAm-co-TMA/SA) hydrogels along with environmental conditions (temperature, ionic strength, and solution pH) affect swelling and adhesion of biofoulants on their surfaces. When challenged with plasma proteins, bacteria, recalcified platelets, or whole blood, stimuli-responsive hydrogels better resisted their adhesion as the content of mixed charges in the copolymer increased, to reach nonbiofouling for the gels made of 100% TMA/SA. The low hemolytic activity (0.5%) associated with a long plasma clotting time (10 min) suggests excellent hemocompatibility excellent hemocompatibility. Finally, hydrogels containing both NIPAAm and TMA/SA tend to exhibit preferential adhesion of leukocytes.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Polímeros/química , Polímeros/farmacología , Acrilamidas/química , Adhesión Bacteriana/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Coagulación Sanguínea/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Hidrogeles/química , Concentración de Iones de Hidrógeno , Leucocitos/citología , Leucocitos/efectos de los fármacos , Metacrilatos/química , Modelos Moleculares , Conformación Molecular , Concentración Osmolar , Temperatura
7.
ACS Appl Mater Interfaces ; 15(41): 48001-48014, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37787514

RESUMEN

The utilization of dielectric barrier discharge (DBD) plasma treatment for modifying substrate surfaces constitutes an easy and simple approach with a potential for diverse applications. This technique was used to modify the surface of a commercial porous expanded poly(tetrafluoroethylene) (ePTFE) film with either dimethylaminoethyl methacrylate (DMAEMA) or (trimethylamino)ethyl methacrylate chloride (TMAEMA) monomers, aiming to obtain antibacterial ePTFE. Physicochemical analyses of the membranes revealed that DBD successfully enhanced the surface energy and surface charge of the membranes while maintaining high porosity (>75%) and large pore size (>1.0 µm). Evaluation of the bacteria killing-releasing (K-R) function revealed that both DMAEMA and TMAEMA endowed ePTFE with the ability to kill Escherichia coli bacteria. However, only TMAEMA-grafted ePTFE allowed for the release of dead bacteria from the surface upon washing with sodium hexametaphosphate (SHMP) saline solution, owing to its cationic charge derived from the quaternary amine. Washing with SHMP disturbed the electrostatic force between the polymer brushes and dead bacteria, which caused the release of the dead bacteria. Lastly, dead-end bacteria filtration showed that the TMAEMA-grafted ePTFE was able to kill 99.78% of the bacteria, while approximately 61.55% of bacteria were killed upon contact. The present findings support the feasibility of using DBD plasma treatment for designing surfaces that target bacteria and aid in the containment of disease-causing pathogens.


Asunto(s)
Líquidos Corporales , Metacrilatos , Metacrilatos/química , Antibacterianos/farmacología , Antibacterianos/química , Polímeros/farmacología , Polímeros/química , Propiedades de Superficie
8.
ACS Biomater Sci Eng ; 8(4): 1532-1543, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35319182

RESUMEN

Although energy-demanding, the surface modification of polytetrafluoroethylene (PTFE) for biomedical applications is mandatory to mitigate irreversible biofouling that occurs whenever PTFE comes into contact with biological fluids. Here, we propose to take advantage of the adhesive properties of dopamine (DA) and of the antifouling ability of various zwitterionic monomers (sulfobetaine methacrylate (SBMA), sulfobetaine methacrylamide (SBAA), sulfobetaine acrylamide (SBAA'), and 4-vinylpyridine propylsulfobetaine (4VPPS)) and form antifouling coatings by copolymerization on the surface of expanded PTFE membranes. This simple, low-energy, and one-step coating procedure arises in significant biofouling mitigation. All zwitterionic coatings led to important reduction of biofouling by red blood cell conentrate (88-94%), platelet conentrate (70-90%), whole blood (40-66%), or bacteria (83-96%). Also, it is shown that the interactions of polydopamine with ePTFE are stable even at high temperatures. However, the zwitterionic monomers are differently affected. While the performance of SBMA coatings decreased (as SBMA is prone to hydrolysis), those of SBAA, SBAA', and 4VPPS coatings were generally maintained. All in all, this study illustrates that efficient and stable antifouling zwitterionic coatings can be generated onto PTFE membranes for biomedical applications, without the use of conventional high-energy-demanding surface modification processes.


Asunto(s)
Incrustaciones Biológicas , Dopamina , Incrustaciones Biológicas/prevención & control , Dopamina/farmacología , Fluorocarburos , Metacrilatos , Politetrafluoroetileno
9.
ACS Appl Bio Mater ; 5(1): 225-234, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35014814

RESUMEN

Air plasma and spray technology are common methods for surface modification. In this study, air plasma is used to generate hydroxyl groups on various material surfaces. Then random copolymers of styrene and ethylene glycol methacrylate (PS-r-PEGMA) are spray-coated to achieve coating densities ranging between 0.1 and 0.6 mg/cm2. PS50-r-PEGMA50 led to the best overall antifouling properties, while a coating density of 0.3 mg/cm2 was enough to significantly reduce biofouling. This surface modification technique enabled efficient modification of a wide range of materials and biofouling reduction by at least 75% on polymeric surfaces (polystyrene, polyvinylidene fluoride, poly(tetrafluoroethylene), polydimethylsiloxane), metallic surfaces (steel, titanium alloy), or ceramic surface (glass). Applied to the modification of well plate used for blood-typing, this antifouling modification permitted to greatly increase the signal sensitivity (×4).


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Polímeros , Poliestirenos , Titanio , Ultrasonido
10.
ACS Biomater Sci Eng ; 7(3): 1031-1045, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33591713

RESUMEN

This work introduces a thermally stable zwitterionic structure able to withstand steam sterilization as a general antifouling medical device interface. The sulfobetaine methacrylate (SBMA) monomer and its polymer form are among the most widely used zwitterionic materials. They are easy to synthesize and have good antifouling properties. However, they partially lose their properties after steam sterilization, a common procedure used to sterilize biomedical interfaces. In this study, ultrahigh-performance liquid chromatography/mass spectrometry (UHPLC-MS) was used to analyze and discuss the molecular structure of SBMA before and after a steam sterilization procedure, and a strategy to address the thermal stability issue proposed, using sulfobetaine methacrylamide (SBAA) instead of SBMA. Interestingly, it was found that the chemical structure of SBAA material can withstand the medical sterilization process at 121 °C while maintaining good antifouling properties, tested with proteins (fibrinogen), bacteria (Escherichia coli), and whole blood. On the other hand, SBMA gels failed at maintaining their excellent antifouling properties after sterilization. This study suggests that the SBAA structure can be used to replace SBMA in the bioinert interface of sterilizable medical devices, such as rayon fiber membranes used for disease control.


Asunto(s)
Betaína , Metacrilatos , Betaína/análogos & derivados , Polímeros , Esterilización
11.
ACS Biomater Sci Eng ; 7(2): 562-576, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33455156

RESUMEN

This work presents nanofibrous membranes made of poly(vinylidene fluoride) (PVDF) and poly(2-methacryloyloxyethyl phosphorylcholine-co-methacryloyloxyethyl butylurethane) (PMBU) for promoting the healing of acute and chronic wounds. Membranes were prepared by an electrospinning process, which led to matrixes with a pore size mimicking the extracellular matrix. PMBU greatly improves the hydration of membranes, resulting in very low biofouling by protein or bacteria and enhanced blood compatibility while the cell viability remains close to 100%. This set of properties exhibited by the suitable combination of physical structure and material composition led to applying the zwitterionic nanofibrous membranes as wound-dressing materials for acute and chronic wounds. The results demonstrated that the zwitterionic membrane could compete with commercial dressings in terms of wound-healing kinetics and could outperform them with regard to the quality of new tissue. Histological analyses suggested that inflammation was reduced while proliferative and maturation phases were accelerated, leading to homogeneous re-epithelialization. This study unveils another potential biomedical application of antifouling zwitterionic membranes.


Asunto(s)
Diabetes Mellitus , Nanofibras , Humanos , Polivinilos , Cicatrización de Heridas
12.
J Mater Chem B ; 8(38): 8853-8863, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33026392

RESUMEN

Biofouling has long been a problem for biomaterials, so being able to control the fouling on the surface of a biomaterial would be ideal. In this study a copolymer system was designed comprising three moieties: an epoxy containing group, glycidyl methacrylate (GMA); a thermoresponsive segment, N-isopropylacrylamide (NIPAAm); and an antifouling zwitterionic unit, sulfobetaine methacrylate (SBMA). The copolymers (pGSN), synthesized via free radical polymerization with these 3 moieties, were then grafted onto polydimethylsiloxane (PDMS). The presence of a critical temperature for both the copolymers and the coated PDMS was evidenced by particle size and contact angle measurements. The coated PDMS exhibited controllable temperature-dependent antifouling behaviors and stimuli-responsive phase characteristics in the presence of salts. The interactions of the coated PDMS with biomolecules were tested via attachment of fibrinogen protein, platelets, human whole blood, and tumor cells (HT1080). The attachment and detachment of these biomolecules were studied at different temperatures. Exposed hydrophobic domains of thermoresponsive NIPAAm-rich pGSN containing NIPAAm at 56 mol% generally allows molecular and cellular attachment on the PDMS surface at 37 °C. On the other hand, the coated PDMS with a relatively high content of SBMA (>41 mol%) in the copolymer started to exhibit fouling resistance and lower the thermoresponsive properties. Interestingly, the incorporation of zwitterionic SBMA units into the copolymers was found to accelerate the hydration of the PDMS surfaces and resulted in biomolecular and cellular detachment at 25 °C, which is comparable to the detachment at 4 °C. This modified surface behavior is found to be consistent through all biofouling tests.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Dimetilpolisiloxanos/química , Fibrinógeno/química , Ácidos Polimetacrílicos/química , Acrilamidas/química , Adsorción , Plaquetas/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Compuestos Epoxi/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Concentración Osmolar , Temperatura
13.
J Mater Chem B ; 7(45): 7184-7194, 2019 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-31657427

RESUMEN

The present study investigates the properties and use as wound-dressing materials of hydrogels made of negatively charged 3-sulfopropyl methacrylate (SA) and positively charged [2-(methacryloyloxy)ethyl]trimethylammonium (TMA) to form poly(SA-co-TMA) gels with/without a charge bias. Their actual chemical compositions were ascertained by XPS which revealed a fair control of the final gel composition obtained from the initial molar ratio in the reaction solution. Zeta potential measurements confirmed the controlled charge bias on which swelling ratio was found to strongly depend, i.e., positively charged or negatively charged gels have a higher tendency to swell than poly(SA-co-TMA) made of 50 mol% of each unit. The anti-biofouling properties were also correlated to the charge bias, i.e., negatively charged and neutral gels resisted well to biofouling by fibrinogen and whole blood, and were much less cytotoxic than their positive counterparts. Applied as wound-dressing materials onto diabetic wounds, it was found that wound closure was almost reached after 21 days, regardless of the gel composition. However, histological analysis revealed that positively charged gels accelerated hemostasis, while neutral gels, much less cytotoxic, were more efficient in the following stages during which the granulation layer and dermis were fully remodelled leading to a dense fibroblast population and thick collagen with no sign of inflammation. All in all, this study sheds light on the effects of charge bias on different wound healing stages and proves the efficiency of pseudo-zwitterionic poly(SA-co-TMA) to heal diabetic wounds for the first time.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Hidrogeles/farmacología , Hipoglucemiantes/farmacología , Metacrilatos/farmacología , Polímeros/farmacología , Ácidos Polimetacrílicos/farmacología , Compuestos de Amonio Cuaternario/farmacología , Cicatrización de Heridas/efectos de los fármacos , Adulto , Aloxano/administración & dosificación , Animales , Línea Celular , Diabetes Mellitus Experimental/inducido químicamente , Geles/síntesis química , Geles/química , Geles/farmacología , Voluntarios Sanos , Humanos , Hidrogeles/síntesis química , Hidrogeles/química , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Inyecciones Intravenosas , Cinética , Masculino , Metacrilatos/química , Tamaño de la Partícula , Polímeros/química , Ácidos Polimetacrílicos/química , Compuestos de Amonio Cuaternario/química , Ratas , Ratas Wistar , Propiedades de Superficie
14.
J Colloid Interface Sci ; 529: 77-89, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29886229

RESUMEN

Bio-inert biomaterial design is vital for fields like biosensors, medical implants, and drug delivery systems. Bio-inert materials are generally hydrophilic and electrical neutral. One limitation faced in the design of bio-inert materials is that most of the modifiers used are specific to their substrate. In this work, we synthesized a novel zwitterionic copolymer containing a catechol group, a non-substrate dependent biomimetic anchoring segment, that can form a stable coating on various materials. No previous study was conducted using a grafting-to approach and determined the critical amount of catechol groups needed to effectively modify a material. The synthesized copolymers of sulfobetaine acrylamide (SBAA) and dopamine methacrylamide (DMA) in this work contains varying numbers of catechol groups, in which the critical number of catechol groups that had effectively modified substrates to have the bio-inert property was determined. The bio-inert property and capability to do coating on versatile substrates were evaluated in contact with human blood by coating different material groups such as ceramic, metallic, and polymeric groups. The novel structure and the simple grafting-to approach provides bio-inert property on various materials, giving them non-specific adsorption and attachment of biomolecules such as plasma proteins, erythrocytes, thrombocytes, bacteria, and tissue cells (85-95% reduction).


Asunto(s)
Acrilamidas/química , Betaína/análogos & derivados , Materiales Biocompatibles/química , Materiales Biomiméticos/química , Catecoles/química , Dopamina/análogos & derivados , Acrilamidas/síntesis química , Acrilamidas/metabolismo , Animales , Betaína/síntesis química , Betaína/química , Betaína/metabolismo , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/metabolismo , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/metabolismo , Biomimética/métodos , Catecoles/síntesis química , Catecoles/metabolismo , Línea Celular , Dopamina/síntesis química , Dopamina/metabolismo , Humanos , Ensayo de Materiales , Ratones
15.
ACS Appl Mater Interfaces ; 10(21): 17771-17783, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29738230

RESUMEN

The field of bioinert materials is relatively mature, as unique molecular designs for antifouling have been regularly presented over the past 30 years. However, the effect of steam sterilization, a common procedure in hospitals for sterilizing biomedical devices in clinical uses, on the stability of antifouling and hemocompatible biomaterials remains unexplored. The only available set of data indicates that poly(sulfobetaine methacrylate) (SBMA) is unstable and loses its antifouling properties when exposed to hot humid air, depriving it of its attractiveness. Here, we present zwitterionic biomaterial gels of poly(4-vinylpyridine propylsulfobetaine) (4VPPS) and explore their propensity to biofouling before and after a 1 h steam sterilization at 121 °C. After incubation with erythrocytes, leukocytes, thrombocytes, whole blood, or various bacteria ( Escherichia coli, Stenotrophomonas maltophilia), the antifouling properties of unsterilized 4VPPS gels are comparable to those of SBMA gels. Importantly, they are maintained after steam sterilization, unlike those of SBMA gels, which shows that the structure of 4VPPS and the interactions with water remain unaffected by the humid heat treatment. The antifouling properties of gels coated on materials mimicking surfaces used in biomedical devices including stainless steel (surgical knife), silicon (biochips), or titanium (electrocautery pen) are also maintained after similar sterilization. In addition, repeated sterilizations do not affect the antifouling properties of 4VPPS. Therefore, these results provide a substantial advance over the current knowledge on antifouling materials for repeated usage in actual conditions that often involve, in a biomedical environment, steam sterilization.


Asunto(s)
Polivinilos/química , Materiales Biocompatibles , Metacrilatos , Piridinas , Esterilización
16.
Colloids Surf B Biointerfaces ; 151: 372-383, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28063289

RESUMEN

This work discusses the impact of the charge bias and the hydrophilicity on the human blood compatibility of pseudozwitterionic biomaterial gels. Four series of hydrogels were prepared, all containing negatively-charged 3-sulfopropyl methacrylate (SA), and either acrylamide, N-isopropylacrylamide, 2-dimethylaminoethyl methacrylate (DMAEMA) or [2-(methacryloyloxy)ethyl]trimethylammonium (TMA), to form SnAm, SnNm, SnDm or SnTm hydrogels, respectively. An XPS analysis proved that the polymerization was well controlled from the initial monomer ratios. All gels present high surface hydrophilicity, but varying bulk hydration, depending on the nature/content of the comonomer, and on the immersion medium. The most negative interfaces (pure SA, S7A3, S5A5) showed significant fibrinogen adsorption, ascribed to the interactions of the αC domains of the protein with the gels, then correlated to considerable platelet adhesion; but low leukocyte/erythrocyte attachments were measured. Positive gels (excess of DMAEMA or TMA) are not hemocompatible. They mediate protein adsorption and the adhesion of human blood cells, through electrostatic attractive interactions. The neutral interfaces (zeta potential between -10mV and +10mV) are blood-inert only if they present a high surface and bulk hydrophilicity. Overall, this study presents a map of the hemocompatible behavior of hydrogels as a function of their surface charge-bias, essential to the design of blood-contacting devices.


Asunto(s)
Aminas/química , Materiales Biocompatibles/química , Eritrocitos/efectos de los fármacos , Leucocitos/efectos de los fármacos , Metacrilatos/química , Acrilamidas/química , Adsorción , Eritrocitos/citología , Fibrinógeno/química , Humanos , Hidrogeles/química , Leucocitos/citología , Adhesividad Plaquetaria , Dominios Proteicos , Electricidad Estática , Propiedades de Superficie , Agua/química
17.
Acta Biomater ; 40: 130-141, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26826530

RESUMEN

UNLABELLED: The present study serves three main functions. First, it presents a novel random copolymer, made of octadecyl acrylate hydrophobic blocks and 2-(dimethylamino)ethyl methacrylate hydrophilic groups, and it zwitterionic form. Second, random copolymer and zwitterionic random copolymer, OmDn and Z-OmDn, are used to modify polypropylene membranes by evaporation coating. Our investigations unveil that this method leads to sufficiently stable self-assembling provided a minimum number of hydrophobic repeat units of 77, which also corresponds to a hydrophobic degree of 74%. Third, antifouling and hemocompatible properties of membranes are thoroughly investigated using all types of blood cells separately, as well as challenging membranes against whole blood in static and dynamic conditions. Membranes modified with zwitterionic copolymer containing 26% of zwitterionic groups are shown to be highly antifouling and hemocompatible, for a coating density as low as 0.2mg/cm(2). Their application in a specially designed blood filtration module enabled to almost totally inhibit blood cells interactions with membrane material, as well as to importantly reduce platelet activation in the permeate (2.5-fold reduction). STATEMENT OF SIGNIFICANCE: The design of new zwitterionic copolymer material is proposed and demonstrated in this study. It was showed that hydrophobicoctadecyl acrylate segments can be introduced in the zwitterioniccarboxybetaine polymer chain with a well-controlled random sequence. Stable, efficient, and effective surface zwitterionization of hydrophobic polypropylene are obtained via grafting onto approach by evaporation-induced self-assembling coating. In the perspective of potential application, hemocompatible blood filtration was demonstrated with the excellent results of non-activated platelets obtained. DESIGN: New zwitterionicmaterial, amphiphatic carboxybetaine copolymers. DEVELOPMENT: Evaporation-induced self-assembling grafting. APPLICATION: Hemocompatible blood filtration.


Asunto(s)
Plaquetas/metabolismo , Etilaminas/química , Hemofiltración , Ensayo de Materiales , Membranas Artificiales , Metacrilatos/química , Activación Plaquetaria , Polipropilenos/química , Betaína/química , Humanos
18.
Colloids Surf B Biointerfaces ; 118: 254-60, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24794801

RESUMEN

Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling moieties.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Metacrilatos/farmacología , Polímeros/farmacología , Glicoles de Propileno/farmacología , Incrustaciones Biológicas , Escherichia coli/efectos de los fármacos , Iones , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Staphylococcus epidermidis/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Propiedades de Superficie , Agua/química
19.
ACS Appl Mater Interfaces ; 6(5): 3201-10, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24513459

RESUMEN

This works reports a set of new functionalized polyethyleneimine (PEI) polymers, including a neutral PEGylated polymer PEI-g-PEGMA, a negatively charged polymer PEI-g-SA, and a zwitterionic polymer PEI-g-SBMA, and their use as antibiofouling coating agent for human teeth protection. Polymers were synthesized by Michael addition, XPS analysis revealed that each polymer could be efficiently coated onto hydroxyapatite, ceramic material used as a model tooth. Polymers carrying a negative net charge were more efficiently adsorbed, because of the establishment of electrostatic interactions with calcium ions. Protein adsorption tests revealed that two factors were important in the reduction of protein adsorption. Both the surface charge and the surface ability to bind and entrap water molecules had to be considered. PEI-g-SBMA, which zeta potential in PBS solution was negative, was efficient to inhibit the adsorption of BSA, a negative protein. On the other hand, it also resisted the adsorption of lysozyme, a positive protein, because zwitterionic molecules can easily entrap water and provide a very hydrophilic environment. Streptococcus mutans attachment tests performed unveiled that all modified polymers were efficient to resist this type of bacteria responsible for dental carries. Best results were also obtained with PEI-g-SBMA coating. This polymer was also shown to efficiently resist the adsorption of positively charged bacteria (Stenotrophomonas maltophilia). Tests performed on real human tooth showed that PEI-g-SBMA could inhibit up to 70% of bacteria adhesion, which constitutes a major result considering that surface of teeth is very rough, therefore physically promoting the attachment of proteins and bacteria.


Asunto(s)
Caries Dental/microbiología , Caries Dental/prevención & control , Materiales Dentales/síntesis química , Durapatita/química , Metacrilatos/química , Polietilenglicoles/química , Diente/microbiología , Adhesión Bacteriana/efectos de los fármacos , Materiales Dentales/química , Humanos , Metacrilatos/síntesis química , Polietilenglicoles/síntesis química , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/fisiología , Propiedades de Superficie
20.
ACS Appl Mater Interfaces ; 6(12): 9858-70, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24881869

RESUMEN

Herein, a pseudozwitterionic structure bearing moieties with mixed positive and negative charges is introduced to develop a potential biomaterial for wound dressing applications. New mixed-charge matrices were prepared by copolymerization of the negatively charged 3-sulfopropyl methacrylate (SA) and positively charged [2-(methacryloyloxy)ethyl] trimethylammonium (TMA) onto expanded polytetrafluoroethylene (ePTFE) membranes. The charge balance was effectively regulated through the control of the initial SA/TMA ratio. The focus was then laid on the assessment of a variety of essential properties of efficient wound dressings including, hydration property, resistance to fibrinogen adsorption, hemocompatibility, as well as resistance to fibroblast attachment and bacteria colonization. It was found that the pseudozwitterionic membranes, compared to those with charge bias in the poly(SA-co-TMA) structure, exhibited the best combination of major properties. Therefore, they were further tested for wound healing. Histological examination of mouse wound treated with the pseudozwitterionic membranes exhibited complete re-epithelialization and total formation of new connective tissues after 14 days, even leading to faster healing than using commercial dressing. Results presented in this work suggest that the mixed-charge copolymers with a perfect balance of positive and negative moieties represent the newest generation of biomaterials for wound dressings.


Asunto(s)
Materiales Biocompatibles/química , Polímeros/química , Cicatrización de Heridas , Adsorción , Animales , Materiales Biocompatibles/uso terapéutico , Humanos , Ratones , Polímeros/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA