Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Calcif Tissue Int ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177752

RESUMEN

Cementum is the least studied of all mineralized tissues and little is known about mechanisms regulating its formation. Therefore, the goal of this study was to provide new insights into the transcriptional regulation of cementum formation by determining the consequences of the deficiency of the Trps1 transcription factor in cementoblasts. We used Trps1Col1a1 cKO (2.3Co1a1-CreERT2;Trps1fl/fl) mice, in which Trps1 is deleted in cementoblasts. Micro-computed tomography analyses of molars of 4-week-old males and females demonstrated significantly shorter roots with thinner mineralized tissues (root dentin and cementum) in Trps1Col1a1 cKO compared to WT mice. Semi-quantitative histological analyses revealed a significantly reduced area of cellular cementum and localized deficiencies of acellular cementum in Trps1Col1a1 cKO mice. Immunohistochemical analyses revealed clustering of cementoblasts at the apex of roots, and intermittent absence of cementoblasts on Trps1Col1a1 cKO cementum surfaces. Fewer Osterix-positive cells adjacent to cellular cementum were also detected in Trps1Col1a1 cKO compared to WT mice. Decreased levels of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme required for proper cementogenesis, were apparent in cementum, periodontal ligament, and alveolar bone of Trps1Col1a1 cKO. There were no apparent differences in levels of bone sialoprotein (Bsp) in cementum. Quantitative analyses of picrosirius red-stained periodontal ligament revealed shorter and disorganized collagen fibers in Trps1Col1a1 cKO mice demonstrating impaired periodontal structure. In conclusion, this study has identified Trps1 transcription factor as one of the important regulators of cellular and acellular cementum formation. Furthermore, this study suggests that Trps1 supports the function of cementoblasts by upregulating expression of the major proteins required for cementogenesis, such as Osterix and TNAP.

2.
Mol Genet Metab ; 126(4): 504-512, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30691926

RESUMEN

Mutations of the TRPS1 gene cause trichorhinophalangeal syndrome (TRPS), a skeletal dysplasia with dental abnormalities. TRPS dental phenotypes suggest that TRPS1 regulates multiple aspects of odontogenesis, including the tooth number and size. Previous studies delineating Trps1 expression throughout embryonic tooth development in mice detected strong Trps1 expression in dental mesenchyme, preodontoblasts, and dental follicles, suggesting that TRPS dental phenotypes result from abnormalities in early developmental processes. In this study, Trps1+/- and Trps1-/- mice were analyzed to determine consequences of Trps1 deficiency on odontogenesis. We focused on the aspects of tooth formation that are disturbed in TRPS and on potential molecular abnormalities underlying TRPS dental phenotypes. Microcomputed tomography analyses of molars were used to determine tooth size, crown shape, and mineralization of dental tissues. These analyses uncovered that disruption of one Trps1 allele is sufficient to impair mineralization of dentin in both male and female mice. Enamel mineral density was decreased only in males, while mineralization of the root dental tissues was decreased only in females. In addition, significantly smaller teeth were detected in Trps1+/- females. Histomorphometric analyses of tooth organs showed reduced anterior-posterior diameter in Trps1-/- mice. BrdU-incorporation assay detected reduced proliferation of mesenchymal and epithelial cells in Trps1-/- tooth organs. Immunohistochemistry for Runx2 and Osx osteogenic transcription factors revealed changes in their spatial distribution in Trps1-/- tooth organs and uncovered cell-type specific requirements of Trps1 for Osx expression. In conclusion, this study has demonstrated that Trps1 is a positive regulator of cell proliferation in both dental mesenchyme and epithelium, suggesting that the microdontia in TRPS is likely due to decreased cell proliferation in developing tooth organs. Furthermore, the reduced mineralization observed in Trps1+/- mice may provide some explanation for the extensive dental caries reported in TRPS patients.


Asunto(s)
Proliferación Celular , Factores de Transcripción GATA/genética , Regulación de la Expresión Génica , Odontogénesis , Calcificación de Dientes , Alelos , Animales , Diferenciación Celular , Caries Dental/etiología , Células Epiteliales , Femenino , Dedos/anomalías , Enfermedades del Cabello/complicaciones , Enfermedades del Cabello/genética , Síndrome de Langer-Giedion/complicaciones , Síndrome de Langer-Giedion/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Diente Molar/patología , Nariz/anomalías , Proteínas Represoras , Microtomografía por Rayos X
3.
Connect Tissue Res ; 55 Suppl 1: 92-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25158189

RESUMEN

Dentin Sialophosphoprotein (DSPP) is the major non-collagenous protein of dentin and plays a significant role in dentin mineralization. Recently, animal models lacking DSPP have been developed and the DSPP KO phenotype has been characterized at the histological level. Little is known, however, about the DSPP KO dentin at nano- and meso-scale. Dentin is a hierarchical material spanning from nano- to macroscale, hence information on the effects of DSPP deficiency at the submicron scale is essential for understanding of its role in dentin biomineralization. To bridge this gap, we have conducted ultrastructural studies of dentin from DSPP KO animals. Transmission electron microscopy (TEM) studies of DSPP KO dentin revealed that although the overall ultrastructural organization was similar to the WT, the mineral particles were less organized. Scanning electron microscopy in the back-scattered mode (BS-SEM) of the DSPP KO dentin revealed that circumpulpal dentin comprises large areas of non-mineralized matrix, with numerous spherulitic mineralized inclusions, while the mantle dentin appeared largely unaffected. Analysis of the mineral distribution in the circumpulpal dentin of the DSPP KO mice suggests a reduction in the number of mineral nucleation sites and an increase in the nucleation barrier in DSPP KO dentin. These preliminary results indicate that in addition to the reduction of mineralized and total dentin volume in DSPP KO animals significant changes in the ultrastructural organization exist. These changes are likely related to the role of DSPP in the regulation of mineral formation and organization in dentin.


Asunto(s)
Dentina/ultraestructura , Dentinogénesis/fisiología , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/ultraestructura , Fosfoproteínas/deficiencia , Fosfoproteínas/ultraestructura , Sialoglicoproteínas/deficiencia , Sialoglicoproteínas/ultraestructura , Calcificación de Dientes/fisiología , Animales , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Fenotipo
4.
Matrix Biol ; 131: 17-29, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38759902

RESUMEN

Amelogenin (AMELX), the predominant matrix protein in enamel formation, contains a singular phosphorylation site at Serine 16 (S16) that greatly enhances AMELX's capacity to stabilize amorphous calcium phosphate (ACP) and inhibit its transformation to apatitic enamel crystals. To explore the potential role of AMELX phosphorylation in vivo, we developed a knock-in (KI) mouse model in which AMELX phosphorylation is prevented by substituting S16 with Ala (A). As anticipated, AMELXS16A KI mice displayed a severe phenotype characterized by weak hypoplastic enamel, absence of enamel rods, extensive ectopic calcifications, a greater rate of ACP transformation to apatitic crystals, and progressive cell pathology in enamel-forming cells (ameloblasts). In the present investigation, our focus was on understanding the mechanisms of action of phosphorylated AMELX in amelogenesis. We have hypothesized that the absence of AMELX phosphorylation would result in a loss of controlled mineralization during the secretory stage of amelogenesis, leading to an enhanced rate of enamel mineralization that causes enamel acidification due to excessive proton release. To test these hypotheses, we employed microcomputed tomography (µCT), colorimetric pH assessment, and Fourier Transform Infrared (FTIR) microspectroscopy of apical portions of mandibular incisors from 8-week old wildtype (WT) and KI mice. As hypothesized, µCT analyses demonstrated significantly higher rates of enamel mineral densification in KI mice during the secretory stage compared to the WT. Despite a greater rate of enamel densification, maximal KI enamel thickness increased at a significantly lower rate than that of the WT during the secretory stage of amelogenesis, reaching a thickness in mid-maturation that is approximately half that of the WT. pH assessments revealed a lower pH in secretory enamel in KI compared to WT mice, as hypothesized. FTIR findings further demonstrated that KI enamel is comprised of significantly greater amounts of acid phosphate compared to the WT, consistent with our pH assessments. Furthermore, FTIR microspectroscopy indicated a significantly higher mineral-to-organic ratio in KI enamel, as supported by µCT findings. Collectively, our current findings demonstrate that phosphorylated AMELX plays crucial mechanistic roles in regulating the rate of enamel mineral formation, and in maintaining physico-chemical homeostasis and the enamel growth pattern during early stages of amelogenesis.


Asunto(s)
Ameloblastos , Amelogénesis , Amelogenina , Esmalte Dental , Microtomografía por Rayos X , Animales , Amelogenina/metabolismo , Amelogenina/genética , Fosforilación , Esmalte Dental/metabolismo , Esmalte Dental/crecimiento & desarrollo , Ratones , Amelogénesis/genética , Ameloblastos/metabolismo , Técnicas de Sustitución del Gen , Fosfatos de Calcio/metabolismo , Concentración de Iones de Hidrógeno
5.
Front Physiol ; 14: 1144712, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846326

RESUMEN

Continuously growing mouse incisors are widely used to study amelogenesis, since all stages of this process (i.e., secretory, transition and maturation) are present in a spatially determined sequence at any given time. To study biological changes associated with enamel formation, it is important to develop reliable methods for collecting ameloblasts, the cells that regulate enamel formation, from different stages of amelogenesis. Micro-dissection, the key method for collecting distinct ameloblast populations from mouse incisors, relies on positions of molar teeth as landmarks for identifying critical stages of amelogenesis. However, the positions of mandibular incisors and their spatial relationships with molars change with age. Our goal was to identify with high precision these relationships throughout skeletal growth and in older, skeletally mature animals. Mandibles from 2, 4, 8, 12, 16, and 24-week-old, and 18-month-old C57BL/6J male mice, were collected and studied using micro-CT and histology to obtain incisal enamel mineralization profiles and to identify corresponding changes in ameloblast morphology during amelogenesis with respect to positions of molars. As reported here, we have found that throughout active skeletal growth (weeks 2-16) the apices of incisors and the onset of enamel mineralization move distally relative to molar teeth. The position of the transition stage also moves distally. To test the accuracy of the landmarks, we micro-dissected enamel epithelium from mandibular incisors of 12-week-old animals into five segments, including 1) secretory, 2) late secretory - transition - early maturation, 3) early maturation, 4) mid-maturation and 5) late maturation. Isolated segments were pooled and subjected to expression analyses of genes encoding key enamel matrix proteins (EMPs), Amelx, Enam, and Odam, using RT-qPCR. Amelx and Enam were strongly expressed during the secretory stage (segment 1), while their expression diminished during transition (segment 2) and ceased in maturation (segments 3, 4, and 5). In contrast, Odam's expression was very low during secretion and increased dramatically throughout transition and maturation stages. These expression profiles are consistent with the consensus understanding of enamel matrix proteins expression. Overall, our results demonstrate the high accuracy of our landmarking method and emphasize the importance of selecting age-appropriate landmarks for studies of amelogenesis in mouse incisors.

6.
Pediatr Res ; 72(5): 495-501, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22926546

RESUMEN

BACKGROUND: Receptor activator of nuclear factor-κB ligand (RANKL) inhibitors are being considered for use in children with osteogenesis imperfecta (OI). We sought to assess efficacy of two doses of a RANKL inhibitor, osteoprotegerin-immunoglobulin Fc segment complex (OPG-Fc), in a growing animal model of OI, the col1α2-deficient mouse (oim/oim) and its wild-type controls (+/+). METHODS: Treated mice showed runting and radiographic evidence of osteopetrosis with either high- (20 mg/kg twice weekly) or low-dose (1 mg/kg/week) OPG-Fc. Because of this adverse event, OPG-Fc treatment was halted, and the mice were killed or monitored for recovery with monthly radiographs and assessment of serum osteoclast activity (tartrate-resistant acid phosphatase 5b, TRACP-5b) until 25 wk of age. RESULTS: Twelve weeks of OPG-Fc treatment resulted in radiographic and histologic osteopetrosis with no evidence of bone modeling and negative tartrate-resistant acid phosphatase staining, root dentin abnormalities, and TRACP-5b activity suppression. Signs of recovery appeared 4-8 wk post-treatment. CONCLUSION: Both high- and low-dose OPG-Fc treatment resulted in osteopetrotic changes in infant mice, an outcome that was not seen in studies with the RANKL inhibitor RANK-immunoglobulin Fc segment complex (RANK-Fc) or in studies with older animals. Further investigations of RANKL inhibitors are necessary before their consideration for use in children.


Asunto(s)
Inmunoconjugados/toxicidad , Fragmentos Fc de Inmunoglobulinas/toxicidad , Osteogénesis Imperfecta/tratamiento farmacológico , Osteopetrosis/inducido químicamente , Osteoprotegerina/toxicidad , Ligando RANK/antagonistas & inhibidores , Fosfatasa Ácida/sangre , Factores de Edad , Animales , Biomarcadores/sangre , Remodelación Ósea/efectos de los fármacos , Colágeno Tipo I/deficiencia , Colágeno Tipo I/genética , Dentina/efectos de los fármacos , Dentina/metabolismo , Dentina/patología , Modelos Animales de Enfermedad , Femenino , Isoenzimas/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis Imperfecta/diagnóstico por imagen , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Osteopetrosis/diagnóstico por imagen , Osteopetrosis/metabolismo , Osteopetrosis/patología , Ligando RANK/metabolismo , Radiografía , Medición de Riesgo , Fosfatasa Ácida Tartratorresistente , Factores de Tiempo , Erupción Dental/efectos de los fármacos , Aumento de Peso/efectos de los fármacos
7.
Artículo en Inglés | MEDLINE | ID: mdl-35573139

RESUMEN

Dental caries is the most common chronic disease in children and adults worldwide. The complex etiology of dental caries includes environmental factors as well as host genetics, which together contribute to inter-individual variation in susceptibility. The goal of this study was to provide insights into the molecular pathology underlying increased predisposition to dental caries in trichorhinophalangeal syndrome (TRPS). This rare inherited skeletal dysplasia is caused by mutations in the TRPS1 gene coding for the TRPS1 transcription factor. Considering Trps1 expression in odontoblasts, where Trps1 supports expression of multiple mineralization-related genes, we focused on determining the consequences of odontoblast-specific Trps1 deficiency on the quality of dental tissues. We generated a conditional Trps1 Col1a1 knockout mouse, in which Trps1 is deleted in differentiated odontoblasts using 2.3kbCol1a1-Cre ERT2 driver. Mandibular first molars of 4wk old male and female mice were analyzed by micro-computed tomography (µCT) and histology. Mechanical properties of dentin and enamel were analyzed by Vickers microhardness test. The susceptibility to acid demineralization was compared between WT and Trps1 Col1a1 cKO molars using an ex vivo artificial caries procedure. µCT analyses demonstrated that odontoblast-specific deletion of Trps1 results in decreased dentin volume in male and female mice, while no significant differences were detected in dentin mineral density. However, histology revealed a wider predentin layer and the presence of globular dentin, which are indicative of disturbed mineralization. The secondary effect on enamel was also detected, with both dentin and enamel of Trps1 Col1a1 cKO mice being more susceptible to demineralization than WT tissues. The quality of dental tissues was particularly impaired in molar pits, which are sites highly susceptible to dental caries in human teeth. Interestingly, Trps1 Col1a1 cKO males demonstrated a stronger phenotype than females, which calls for attention to genetically-driven sex differences in predisposition to dental caries. In conclusion, the analyses of Trps1 Col1a1 cKO mice suggest that compromised quality of dental tissues contributes to the high prevalence of dental caries in TRPS patients. Furthermore, our results suggest that TRPS patients will benefit particularly from improved dental caries prevention strategies tailored for individuals genetically predisposed due to developmental defects in tooth mineralization.

8.
Aust Endod J ; 46(3): 432-438, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32881161

RESUMEN

The aim of the study was to examine the effect of operator experience on the quality of instrumentation of molar canals using the TF Adaptive file system (SybronEndo, Orange, CA) on a 3D-printed molar replica model. Three novice and two expert operators instrumented the root canals of three replicas each and resulting pre- and postinstrumentation 12 micron voxel size-microCT volumes of each replica were digitally registered. Relative modified canal wall surface fraction and canal transportation (1-9 mm from the apex) were calculated and analysed by anova. Instrumentation by expert operators resulted in overall higher (P = 0.002) modified wall surface fraction in the distal but not the mesial and higher (P = 0.002) combined from all canal level transportation in the mesiobuccal canals but not the mesiolingual and distal canals. Instrumentation efficiency but also transportation using the TF Adaptive file system can be higher among expert, compared to novice, operators, depending on the canal type.


Asunto(s)
Cavidad Pulpar , Preparación del Conducto Radicular , Diente Molar/diagnóstico por imagen , Microtomografía por Rayos X
9.
Calcif Tissue Int ; 84(2): 126-37, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19082853

RESUMEN

Hypophosphatemia is an X-linked dominant disorder resulting from a mutation in the PHEX gene. While osteoblast-specific expression of the PHEX transgene has been reported to decrease the phosphate wasting associated with the disease in male hypophosphatemic (HYP) mice, there are reports that the mineralization defect is only partially corrected in young animals. To test the hypothesis that osteoblast-specific expression of the PHEX gene for a longer time would correct the mineralization defect, this study examined the bones of 9-month-old male and female HYP mice and their wild-type controls with or without expression of the transgene under a collagen type I promoter. Serum phosphate levels, alkaline phosphatase activity, and FGF23 levels were also measured. Mineral analyses based on wide-angle X-ray diffraction, Fourier transform-infrared (FT-IR) spectroscopy, and FT-IR imaging confirmed the decreased mineral content and increased mineral crystal size in male HYP humerii compared to wild-type males and females with or without the transgene and in female HYP mice with or without the transgene. There was a significant increase in mineral content and a decrease in crystallinity in the HYP males' bones with the transgene, compared to those without. Of interest, expression of the transgene in wild-type animals significantly increased the mineral content in both males and females without having a detectable effect on crystallinity or carbonate content. In contrast to the bones, based on micro-computed tomography and FT-IR imaging, at 9 months there were no significant differences between the HYP and the WT teeth, precluding analysis of the effect of the transgene.


Asunto(s)
Calcificación Fisiológica/genética , Hipofosfatemia/genética , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Transgenes , Animales , Densidad Ósea , Modelos Animales de Enfermedad , Femenino , Factor-23 de Crecimiento de Fibroblastos , Hipofosfatemia/metabolismo , Masculino , Ratones , Ratones Transgénicos , Osteomalacia/metabolismo , Osteomalacia/patología , Endopeptidasa Neutra Reguladora de Fosfato PHEX/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
10.
Methods Mol Biol ; 1922: 309-324, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30838586

RESUMEN

3D analysis of animal or human whole teeth and alveolar bone can be performed with high sensitivity in a nondestructive manner by microcomputed tomography. Here we describe the protocols to be followed for the most common applications in the developmental studies of dental and craniofacial tissues. Emphasis is placed on the basis of choosing settings for image acquisition, such as voxel resolution (Fig. 1), or beam energy (Fig. 2) and for processing, such as segmentation method (Fig. 3), parameters. The limitations to take into account for optimal efficiency and image quality are also explained.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Odontogénesis , Diente/crecimiento & desarrollo , Microtomografía por Rayos X/métodos , Animales , Esmalte Dental/crecimiento & desarrollo , Esmalte Dental/ultraestructura , Humanos , Mandíbula/crecimiento & desarrollo , Mandíbula/ultraestructura , Ratones , Manejo de Especímenes/métodos , Diente/ultraestructura
11.
J Biomed Mater Res B Appl Biomater ; 107(2): 342-351, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29638047

RESUMEN

Magnesium (Mg) and its alloys are candidate materials for resorbable implantable devices, such as orthopedic devices or cardiovascular stents. Mg has a number advantages, including mechanical properties, light weight, its osteogenic effects and the fact that its degradation products are nontoxic and naturally present in the body. However, production of H2 gas during the corrosion reaction can cause formation of gas pockets at the implantation site, posing a barrier to clinical applications of Mg. It is therefore desirable to develop methods to control corrosion rate and gas pocket formation around the implants. Here we evaluate the potential of self-assembled multilayer alkylsilane (AS) coatings to control Mg device corrosion and formation of gas pockets in vivo and to assess effects of the AS coatings on the surrounding tissues in a subcutaneous mouse model over a 6 weeks' period. The coating significantly slowed down corrosion and gas pocket formation as evidenced by smaller gas pockets around the AS coated implants (ANOVA; p = 0.013) and decrease in the weight loss values (t test; p = 0.07). Importantly, the microCT and profilometry analyses demonstrated that the coating inhibited the pitting corrosion. Specifically, the roughness of the coated samples was ∼30% lower than uncoated specimen (p = 0.02). Histological assessment of the tissues under the implant revealed no inflammation or foreign body reaction. Overall, our results demonstrate the feasibility of use of the seld assembled AS coatings for reduction of gas pocket formation around the resorbable Mg devices. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 342-351, 2019.


Asunto(s)
Implantes Absorbibles , Materiales Biocompatibles Revestidos , Magnesio , Ensayo de Materiales , Silanos , Animales , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Corrosión , Magnesio/química , Magnesio/farmacología , Masculino , Ratones , Ratones Pelados , Silanos/química , Silanos/farmacología
12.
Matrix Biol ; 52-54: 246-259, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26780724

RESUMEN

Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases - dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp(-/-) mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp(-/-) animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp(-/-) incisors compared to the Dspp(+/-) control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel.


Asunto(s)
Esmalte Dental/diagnóstico por imagen , Proteínas de la Matriz Extracelular/genética , Mutación , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Desmineralización Dental/diagnóstico por imagen , Amelogénesis , Animales , Masculino , Ratones , Ratones Noqueados , Desmineralización Dental/genética
13.
Acta Biomater ; 28: 234-239, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26318803

RESUMEN

Magnesium (Mg) alloys have many unique qualities which make them ideal candidates for bone fixation devices, including biocompatibility and degradation in vivo. Despite a rise in Mg alloy production and research, there remains no standardized system to assess their degradation or biological effect on human stem cells in vivo. In this study, we developed a novel in vivo model to assess Mg alloys for craniofacial and orthopedic applications. Our model consists of a collagen sponge seeded with human bone marrow stromal cells (hBMSCs) around a central Mg alloy rod. These scaffolds were implanted subcutaneously in mice and analyzed after eight weeks. Alloy degradation and biological effect were determined by microcomputed tomography (microCT), histological staining, and immunohistochemistry (IHC). MicroCT showed greater volume loss for pure Mg compared to AZ31 after eight weeks in vivo. Histological analysis showed that hBMSCs were retained around the Mg implants after 8 weeks. Furthermore, immunohistochemistry showed the expression of dentin matrix protein 1 and osteopontin around both pure Mg and AZ31 with implanted hBMSCs. In addition, histological sections showed a thin mineral layer around all degrading alloys at the alloy-tissue interface. In conclusion, our data show that degrading pure Mg and AZ31 implants are cytocompatible and do not inhibit the osteogenic property of hBMSCs in vivo. These results demonstrate that this model can be used to efficiently assess the biological effect of corroding Mg alloys in vivo. Importantly, this model may be modified to accommodate additional cell types and clinical applications. STATEMENT OF SIGNIFICANCE: Magnesium (Mg) alloys have been investigated as ideal candidates for bone fixation devices due to high biocompatibility and degradation in vivo, and there is a growing need of establishing an efficient in vivo material screening system. In this study, we assessed degradation rate and biological effect of Mg alloys by transplanting Mg alloy rod with human bone marrow stromal cells seeded on collagen sponge subcutaneously in mice. After 8 weeks, samples were analyzed by microcomputed tomography and histological staining. Our data show that degrading Mg alloys are cytocompatible and do not inhibit the osteogenic property of hBMSCs in vivo. These results demonstrate that this model can be used to efficiently assess the biological effect of corroding Mg alloys in vivo.


Asunto(s)
Aleaciones , Magnesio/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Modelos Biológicos , Células Cultivadas , Humanos
14.
Biomed Res Int ; 2013: 295812, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23802117

RESUMEN

The Brtl/+ mouse is a knock-in model for osteogenesis imperfecta type IV in which a Gly349Cys substitution was introduced into one COL1A1 allele. To gain insight into the changes in dentin structure and mineral composition in these transgenic mice, the objective of this study was to use microcomputed tomography (micro-CT), scanning electron microscopy (SEM), and Fourier transform infrared imaging (FTIRI) to analyze these structures at 2 and 6 months of age. Results, consistent with the dental phenotype in humans with type IV OI, showed decreased molar volume and reduced mineralized tissue volume in the teeth without changes in enamel properties. Increased acid phosphate content was noted at 2 and 6 months by FTIRI, and a trend towards altered collagen structure was noted at 2 but not 6 months in the Brtl/+ teeth. The increase in acid phosphate content suggests a delay in the mineralization process, most likely associated with the defect in the collagen structure. It appears that in the Brtl/+ teeth slow maturation of the mineralized structures allows correction of altered mineral content and acid phosphate distribution.


Asunto(s)
Calcificación Fisiológica , Minerales/metabolismo , Diente/metabolismo , Diente/fisiopatología , Animales , Mandíbula/diagnóstico por imagen , Mandíbula/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Diente Molar/diagnóstico por imagen , Diente Molar/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Microtomografía por Rayos X
15.
Bone ; 47(1): 93-101, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20362701

RESUMEN

Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues.


Asunto(s)
Huesos/metabolismo , Minerales/metabolismo , Proteínas Ribosómicas/deficiencia , Diente/metabolismo , Animales , Huesos/diagnóstico por imagen , Huesos/patología , Colágeno/metabolismo , Hipercementosis/diagnóstico por imagen , Hipercementosis/patología , Ratones , Diente Molar/diagnóstico por imagen , Diente Molar/metabolismo , Diente Molar/patología , Proteínas Ribosómicas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Diente/diagnóstico por imagen , Diente/patología , Microtomografía por Rayos X
16.
Bone ; 43(6): 983-90, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18789408

RESUMEN

Dentin sialophosphoprotein has been implicated in the mineralization process based on the defective dentin formation in Dspp null mice (Dspp-/-). Dspp is expressed at low levels in bone and Dspp-/- femurs assessed by quantitative micro-computed tomography (micro-CT) and Fourier transform infrared spectroscopic imaging (FTIRI) exhibit some mineral and matrix property differences from wildtype femurs in both developing and mature mice. Compared to wildtype, Dspp-/- mice initially (5 weeks) and at 7 months had significantly higher trabecular bone volume fractions and lower trabecular separation, while at 9 months, bone volume fraction and trabecular number were lower. Cortical bone mineral density, area, and moments of inertia in Dspp-/- were reduced at 9 months. By FTIRI, Dspp-/- animals initially (5 months) contained more stoichiometric bone apatite with higher crystallinity (crystal size/perfection) and lower carbonate substitution. This difference progressively reversed with age (significantly decreased crystallinity and increased acid phosphate content in Dspp-/- cortical bone by 9 months of age). Mineral density as determined in 3D micro-CT and mineral-to-matrix ratios as determined by 2D FTIRI in individual cortical and trabecular bones were correlated (r(2)=0.6, p<0.04). From the matrix analysis, the collagen maturity of both cortical and trabecular bones was greater in Dspp-/- than controls at 5 weeks; by 9 months this difference in cross-linking pattern did not exist. Variations in mineral and matrix properties observed at different ages are attributable, in part, to the ability of the Dspp gene products to regulate both initial mineralization and remodeling, implying an effect of Dspp on bone turnover.


Asunto(s)
Calcificación Fisiológica/fisiología , Precursores de Proteínas/fisiología , Animales , Densidad Ósea , Proteínas de la Matriz Extracelular , Ratones , Ratones Noqueados , Fosfoproteínas , Precursores de Proteínas/genética , Sialoglicoproteínas , Espectroscopía Infrarroja por Transformada de Fourier , Tomografía Computarizada por Rayos X
17.
Eur J Oral Sci ; 115(4): 296-302, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17697169

RESUMEN

Phosphorylation of the organic matrix proteins of dentin is important for the initiation of mineralization, but its relevance in later mineralization stages is controversial. The objective of this study was to analyze changes in the total matrix phosphate content during dentin development and to identify their origin. Amino acid and total matrix phosphate analyses of microdissected developing mantle and circumpulpal fetal bovine dentin specimens were performed. The amino acid composition showed few changes during mantle and circumpulpal dentin maturation. However, the total matrix phosphate content showed a significant, positive correlation with tissue maturation in both mantle and circumpulpal dentin, with a two- and a three-fold increase, respectively, being observed. The data indicate that changes occur in the pattern of phosphorylation of matrix proteins during dentin maturation, which we suggest may play a functional role in later stages of tooth mineralization.


Asunto(s)
Aminoácidos/metabolismo , Dentina/química , Proteínas de la Matriz Extracelular/metabolismo , Incisivo/química , Fosfatos/metabolismo , Factores de Edad , Animales , Bovinos , Dentina/embriología , Femenino , Incisivo/embriología , Fosfoproteínas/metabolismo , Fosforilación , Embarazo , Sialoglicoproteínas
18.
Cells Tissues Organs ; 181(3-4): 144-53, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16612080

RESUMEN

Hydroxyapatite mineral is deposited in an organized fashion in the matrices of bones and teeth. The amount of mineral present, the composition of the mineral, and the size of the mineral crystals varies with both tissue and animal age, diet, health status, and the tissue being examined. Here, we review methods for measuring these differences in mineral properties and provide some illustrations from bones and teeth of animals in which the small leucine-rich proteoglycans (biglycan and decorin) were ablated. Differences in mineral properties between biglycan-deficient bones and teeth are related to the functions of this small proteoglycan in these tissues.


Asunto(s)
Huesos/química , Proteínas de la Matriz Extracelular/deficiencia , Proteoglicanos/deficiencia , Espectroscopía Infrarroja por Transformada de Fourier , Tomografía Computarizada por Rayos X , Diente/química , Animales , Biglicano , Densidad Ósea , Huesos/diagnóstico por imagen , Decorina , Proteínas de la Matriz Extracelular/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Proteoglicanos/genética , Diente/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA