Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomater Sci ; 11(20): 6801-6822, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37622217

RESUMEN

An important challenge in tissue engineering is the regeneration of functional articular cartilage (AC). In the field, biomimetic hydrogels are being extensively studied as scaffolds that recapitulate microenvironmental features or as mechanical supports for transplanted cells. New advanced hydrogel formulations based on salmon methacrylate gelatin (sGelMA), a cold-adapted biomaterial, are presented in this work. The psychrophilic nature of this biomaterial provides rheological advantages allowing the fabrication of scaffolds with high concentrations of the biopolymer and high mechanical strength, suitable for formulating injectable hydrogels with high mechanical strength for cartilage regeneration. However, highly intricate cell-laden scaffolds derived from highly concentrated sGelMA solutions could be deleterious for cells and scaffold remodeling. On this account, the current study proposes the use of sGelMA supplemented with a mesophilic sacrificial porogenic component. The cytocompatibility of different sGelMA-based formulations is tested through the encapsulation of osteoarthritic chondrocytes (OACs) and stimulated to synthesize extracellular matrix (ECM) components in vitro and in vivo. The sGelMA-derived scaffolds reach high levels of stiffness, and the inclusion of porogens impacts positively the scaffold degradability and molecular diffusion, improved fitness of OACs, increased the expression of cartilage-related genes, increased glycosaminoglycan (GAG) synthesis, and improved remodeling toward cartilage-like tissues. Altogether, these data support the use of sGelMA solutions in combination with mammalian solid gelatin beads for highly injectable formulations for cartilage regeneration, strengthening the importance of the balance between mechanical properties and remodeling capabilities.


Asunto(s)
Cartílago Articular , Gelatina , Animales , Porosidad , Condrocitos/trasplante , Ingeniería de Tejidos , Hidrogeles , Materiales Biocompatibles , Regeneración , Andamios del Tejido , Mamíferos
2.
Biomed Mater ; 18(4)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37167997

RESUMEN

Although there have been many advances in injectable hydrogels as scaffolds for tissue engineering or as payload-containing vehicles, the lack of adequate microporosity for the desired cell behavior, tissue integration, and successful tissue generation remains an important drawback. Herein, we describe an effective porous injectable system that allowsin vivoformation of pores through conventional syringe injection at room temperature. This system is based on the differential melting profiles of photocrosslinkable salmon gelatin and physically crosslinked porogens of porcine gelatin (PG), in which PG porogens are solid beads, while salmon methacrylamide gelatin remains liquid during the injection procedure. After injection and photocrosslinking, the porogens were degraded in response to the physiological temperature, enabling the generation of a homogeneous porous structure within the hydrogel. The resultant porogen-containing formulations exhibited controlled gelation kinetics within a broad temperature window (18.5 ± 0.5-28.8 ± 0.8 °C), low viscosity (133 ± 1.4-188 ± 16 cP), low force requirements for injectability (17 ± 0.3-39 ± 1 N), robust mechanical properties after photo-crosslinking (100.9 ± 3.4-332 ± 13.2 kPa), and favorable cytocompatibility (>70% cell viability). Remarkably,in vivosubcutaneous injection demonstrated the suitability of the system with appropriate viscosity and swift crosslinking to generate porous hydrogels. The resulting injected porous constructs showed favorable biocompatibility and facilitated cell infiltration for desirable potential tissue remodeling. Finally, the porogen-containing formulations exhibited favorable handling, easy deposition, and good shape fidelity when used as bioinks in 3D bioprinting technology. This injectable porous system serves as a platform for various biomedical applications, thereby inspiring future advances in cell therapy and tissue engineering.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Gelatina/química , Porosidad , Materiales Biocompatibles/química , Hidrogeles/química , Impresión Tridimensional
3.
Sci Rep ; 9(1): 19379, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852912

RESUMEN

The role of Porphyromonas gingivalis (P. gingivalis) or its virulence factors, including lipopolysaccharide (LPS) not only has been related with periodontitis but also with endothelial dysfunction, a key mechanism involved in the genesis of atherosclerosis and hypertension that involving systemic inflammatory markers as angiotensin II (Ang II) and cytokines. This study compares the effect of repeated and unique exposures of P. gingivalis W83 LPS and live bacteria on the production and expression of inflammatory mediators and vasoconstrictor molecules with Ang II. Human coronary artery endothelial cells (HCAEC) were stimulated with purified LPS of P. gingivalis (1.0, 3.5 or 7.0 µg/mL) or serial dilutions of live bacteria (MOI 1: 100 - 1:0,1) at a single or repeated exposure for a time of 24 h. mRNA expression levels of AGTR1, AGTR2, IL-8, IL-1ß and MCP-1 were determined by RT-qPCR, and IL-6, MCP-1, IL-8, IL-1ß and GM-CSF levels were measured by flow cytometry, ELISA determined Ang II levels. Live bacteria in a single dose increased mRNA levels of AGTR1, and repeated doses increased mRNA levels of IL-8 and IL-1ß (p < 0.05). Repeated exposure of live-P. gingivalis induced significant production IL-6, MCP-1 and GM-CSF (p < 0.05). Moreover, these MCP-1, IL-6 and GM-CSF levels were greater than in cells treated with single exposure (p < 0.05), The expression of AGTR1 and production of Ang II induced by live-P. gingivalis W83 showed a vasomotor effect of whole bacteria in HCAEC more than LPS. In conclusion, the findings of this study suggest that repeated exposure of P. gingivalis in HCAEC induces the activation of proinflammatory and vasoconstrictor molecules that lead to endothelial dysfunction being a key mechanism of the onset and progression of arterial hypertension and atherosclerosis.


Asunto(s)
Angiotensina II/metabolismo , Aterosclerosis/metabolismo , Hipertensión/metabolismo , Periodontitis/etiología , Porphyromonas gingivalis/metabolismo , Angiotensina II/genética , Aterosclerosis/microbiología , Aterosclerosis/patología , Quimiocina CCL2/genética , Vasos Coronarios/metabolismo , Vasos Coronarios/microbiología , Vasos Coronarios/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/microbiología , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Humanos , Hipertensión/microbiología , Hipertensión/patología , Inflamación/genética , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Interleucina-6/genética , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Periodontitis/genética , Periodontitis/metabolismo , Periodontitis/microbiología , Porphyromonas gingivalis/patogenicidad , ARN Mensajero/genética , Receptor de Angiotensina Tipo 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA