Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Periodontal Res ; 57(1): 115-130, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34716926

RESUMEN

BACKGROUND AND OBJECTIVES: The mechanisms of particulate matter (PM) toxicity involve the generation of ROS and upregulation of proinflammatory molecules. Nrf2 is a multifunctional cytoprotective transcription factor that regulates the expression of various antioxidant, anti-inflammatory, and detoxifying molecules, such as HO-1. As surfactin has potential to induce Nrf2 activation and HO-1 expression, this study aimed to investigate the anti-inflammatory effects of surfactin on PM-exposed human gingival fibroblasts (HGFs) and signaling pathways engaged by surfactin. MATERIALS AND METHODS: Human gingival fibroblasts were challenged by PM with or without surfactin pretreatment. The expression of Nrf2, HO-1, VCAM-1, and other molecules was determined by western blot, real-time PCR, or ELISA. Human monocytic THP-1 cells labeled with fluorescent reagent were added to HGFs, and the cell adhesion was assessed. ROS generation and NADPH oxidase activity were also measured. The involvement of Nrf2/HO-1 and ROS signaling pathways was investigated by treating HGFs with specific pathway interventions, genetically or pharmacologically. One dose of surfactin was given to mice before PM treatment to explore its in vivo effect on VCAM-1 expression in gingival tissues. RESULTS: Particulate matter led to VCAM-1-dependent monocyte adhesion in HGFs, which was regulated by PKCα/NADPH oxidase/ROS/STAT1/IL-6 pathway. Surfactin could attenuate monocyte adhesion by disrupting this VCAM-1-dependent pathway. Additionally, surfactin promoted Nrf2-dependent HO-1 expression in HGFs, mitigating VCAM-1 expression. PM-treated mice exhibited the lower expression of IL-6 and VCAM-1 in gingival tissues if they previously received surfactin. CONCLUSION: Surfactin exerts anti-inflammatory effects against PM-induced inflammatory responses in HGFs by inhibiting VCAM-1-dependent pathway and inducing Nrf2/HO-1 axis.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Material Particulado , Animales , Fibroblastos , Hemo-Oxigenasa 1/genética , Humanos , Ratones , Monocitos , Material Particulado/toxicidad , Molécula 1 de Adhesión Celular Vascular
2.
J Periodontal Res ; 56(6): 1185-1199, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34486757

RESUMEN

OBJECTIVE: To evaluate the anti-inflammatory effects of surfactin and underlying mechanisms against particulate matter (PM)-induced inflammatory responses in human gingival fibroblasts (HGFs). BACKGROUND: PM, a major air pollutant, may associate with certain oral diseases possibly by inducing inflammation and oxidative stress. Surfactin, a potent biosurfactant, possesses various biological properties including anti-inflammatory activity. However, the underlying mechanisms are unclear. Also, there is no study investigating the effects of surfactin on PM-induced oral inflammatory responses. As an essential constituent of human periodontal connective tissues which involves immune-inflammatory responses, HGFs serve as useful study models. METHODS: HGFs were pretreated with surfactin prior to PM incubation. The PGE2 production was determined by ELISA, while the protein expression and mRNA levels of COX-2 and upstream regulators were measured using Western blot and real-time PCR, respectively. The transcriptional activity of COX-2 and NF-κB were determined using promoter assay. ROS generation and NADPH oxidase activity were identified by specific assays. Co-immunoprecipitation assay, pharmacologic inhibitors, and siRNA transfection were applied to explore the interplay of molecules. Mice were given one dose of surfactin or different pharmacologic inhibitors, then PM was delivered into the gingiva for three consecutive days. Gingival tissues were obtained for analyzing COX-2 expression. RESULTS: PM-treated HGFs released significantly higher COX-2-dependent PGE2 , which were regulated by TLR2 and TLR4/MyD88/NADPH oxidase/ROS/PI3K/Akt/NF-κB pathway. PM-induced COX-2/PGE2 increase was effectively reversed by surfactin through the disruption of regulatory pathway. Similar inhibitory effects of surfactin was observed in mice. CONCLUSION: Surfactin may elicit anti-inflammatory effects against PM-induced oral inflammatory responses.


Asunto(s)
FN-kappa B , Fosfatidilinositol 3-Quinasas , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dinoprostona , Fibroblastos/metabolismo , Encía/metabolismo , Humanos , Ratones , Factor 88 de Diferenciación Mieloide , NADPH Oxidasas , FN-kappa B/metabolismo , Material Particulado , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Receptor Toll-Like 2/genética , Receptor Toll-Like 4
3.
J Periodontal Res ; 56(4): 804-818, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33729569

RESUMEN

OBJECTIVE: To investigate protective effects of Taiwanese green propolis (TGP) against high glucose-induced inflammatory responses in human gingival fibroblasts (HGFs) through NLRP3 inflammasome signaling pathway. BACKGROUND: NLRP3 inflammasome has been implicated in the progression of both diabetes mellitus and periodontitis, suggesting a common potential therapeutic target for these diseases. Propolis is renowned for various biological activities, particularly anti-inflammation and antioxidant, representing a promising therapy for many conditions. However, underlying mechanisms remain unclear. METHODS: The cytotoxicity of TGP was evaluated by cell viability assay. The mRNA levels and protein expression or secretion of various inflammatory molecules and NLRP3 inflammasome-related molecules in high glucose-exposed HGFs with or without pretreatment of TGP (5 µg/ml) were determined by real-time PCR and western blot or specific kits, respectively. Intracellular and mitochondrial ROS measurements, NADPH oxidase activity determination, and subcellular fractions were performed to assess ROS generation. The transcriptional activity of NF-κB was measured by luciferase reporter kit. The signaling components were further differentiated using pharmacological inhibitors of ROS and small interfering RNAs of TLR2, TLR4, or NF-κB. RESULTS: High glucose could induce IL-1ß-driven inflammatory responses in HGFs via the activation of NLRP3 inflammasome regulated by TLR2/TLR4 coupled ROS in NF-κB-dependent manner. TGP had no adverse impact on the cell viability of HGFs at concentrations no greater than 10 µg/ml, and could exert inhibitory effects on high glucose-induced inflammatory responses via the interruption of NLRP3 inflammasome signaling pathway. CONCLUSION: Taiwanese green propolis could elicit protective effects against IL-1ß-driven inflammation in high glucose-exposed HGFs through TLR2/TLR4 combined ROS/NF-κB/NLRP3 inflammasome pathway.


Asunto(s)
Inflamasomas , Própolis , Fibroblastos , Glucosa/toxicidad , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR , Própolis/farmacología , Transducción de Señal
4.
Biochem Pharmacol ; 182: 114286, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33069666

RESUMEN

Nowadays, air pollution which is dominated by fine particulate matter with aerodynamic diameter less than or equal to 2.5 µm resulting from rapid industrialization and urbanization combined with population explosion has become more and more severe problem to mankind and the whole planet because of its diversity of deleterious effects. The latest data estimated that exposure to fine particulate matter, or PM2.5, contributes to approximately 4 million deaths worldwide due to cardiopulmonary conditions such as heart disease and stroke, respiratory infections, chronic lung disease and lung cancer. During recent years, there has been growing concern about the adverse effects of this global threat on oral health which is one of key components of general health and quality of life. Although a few studies have reported such possible association, the findings are still far from conclusion. Moreover, the underlying mechanisms remain unclear. To our knowledge, the analysis of literature regarding this scope has yet been published. Thus, current work systematically assesses existing evidences on the potential association between exposure to PM2.5 and the development of various oral diseases as well as figures out the plausible paradigm of PM2.5-induced damages in the oral cavity through its toxic chemical constituents along with its ability to induce oxidative stress via reactive oxygen species production. This might partially provide the clues for new research ideas and progression in the field of oral health.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Mucosa Bucal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Atmosféricos/química , Animales , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/patología , Estrés Oxidativo/fisiología , Material Particulado/química , Enfermedades Periodontales/inducido químicamente , Enfermedades Periodontales/metabolismo , Enfermedades Periodontales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA