Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Sci Technol ; 53(24): 14496-14506, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31790222

RESUMEN

Microplastics were extracted from freshwater sport fish stomachs containing substantial biomass and identified using optical microscopy, scanning electron microscopy plus energy-dispersive X-ray spectroscopy (SEM/EDS), and Fourier transform infrared (FTIR) micro-spectroscopy with automated spectral mapping. An extraction method is presented that uses a negatively pressurized sieve stack and purified water to preserve plastic surface characteristics and any adsorbed persistent organic pollutants (POPs). This nondestructive extraction method for large predators' stomachs enables multiple trophic-level studies from one fish sampling event and provides other dietary and behavioral data. FTIR-identified microplastics 50-1500 µm, including polyethylene (two with plastic additive POPs), styrene acrylonitrile, polystyrene, and nylon and polyethylene terephthalate fibers 10-50 µm wide. SEM/EDS revealed characteristic surface weathering on the plastic surfaces. The nylon fibers appear to be from human fishing activities, suggesting options for management. Some particles visually identified as potential plastics were revealed by micro-spectroscopy to be mineralized, natural polyamide proteins, or nonplastic shell pieces. A low-cost, reflective sample preparation method with stable particle mounting was developed to enable automated mapping, improved FTIR throughput, and lower detection size limit. This study yielded 37 intact prey items set aside for future analyses.


Asunto(s)
Peces , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Agua Dulce , Microplásticos , Plásticos , Espectroscopía Infrarroja por Transformada de Fourier , Estómago
2.
Chemosphere ; 304: 135295, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35697113

RESUMEN

The need for improved microplastic (MP) data accuracy has been widely reported, but MP precision issues have been investigated less thoroughly. This work demonstrates how initial and continuing assessments of a laboratory's analytical precision can be used for establishing laboratory repeatability for MP analyses. These precision estimates can be reported along with MP results to ensure their quality and compare them meaningfully to other data. Re-analyses of reference MP samples can be used to assess and compare precision between different laboratories. A multi-lab precision exercise was demonstrated using infrared (IR) standard test methods performed on reference samples consisting of low-concentration MP spikes in both clean water and wastewater matrices. Each lab repeated their IR analyses 7 times and calculated relative standard deviations (RSD) for each detected polymer type using a standardized template. All labs' MP methods yielded generally repeatable results, though RSDs were consistently higher for lower MP counts. The reported range of total MP counts per sample was 8-33 particles, and the observed RSDs were 0.1-0.6. These RSDs were the same or lower than the expected imprecision due to random (Poisson) counting error alone, suggesting that these automated methods did not contribute any additional variability, and had slightly better reproducibility than expected for independent recounts. The wastewater matrix exhibited numerous interfering particles but did not yield more variability than the clean water matrix. The low-count design is a worst case for precision but is appropriate for some real-world sample concentrations. In practice, labs could generate separate references for precision assessment at multiple MP ranges (e.g., high, medium, and low.) The RSDs obtained from this data can be used to generate QC charts, detect changes in analyst performance, compare to Poisson error to identify additional sources of imprecision, and determine target filtration and instrumental parameters for MP analyses.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Plásticos/análisis , Reproducibilidad de los Resultados , Aguas Residuales/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-35162717

RESUMEN

Public complaints have raised concerns that some mattresses in the current marketplace may be potential sources of airborne fiberglass. Although mattress foam is often marketed as chemical-free, their cover compositions are not as well understood by the general public. To fill these basic information gaps, the covers of four newly purchased mattresses were sampled and analyzed using polarized light microscopy, SEM-EDS, and FTIR microspectroscopy. Two of the mattress covers contained over 50% fiberglass in their inner sock layers. Up to 1% of the fiberglass had migrated to adjacent fabric layers, representing a potential risk of consumer exposure if the zipper on the outer cover is opened. The observed fiberglass fragments had calculated aerodynamic diameters ranging between 30 and 50 µm, suggesting they are potentially inhalable into the nose, mouth, and throat, but are likely too large to penetrate deeper into the lungs. No fiberglass was observed on the brand new mattresses' outer surfaces. Synthetic fibers also present in the sock layers were consistent with flame resistant modacrylic containing vinyl chloride and antimony. The use of fiberglass and other chemicals in mattress covers poses a potential health risk if these materials are not adequately contained. The apparent non-inclusion of mattress covers in chemical-free certifications suggests that further improvements are needed in mattress labeling and education of consumers.


Asunto(s)
Antimonio , Lechos , Vidrio
4.
PLoS One ; 15(10): e0240613, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33075091

RESUMEN

BACKGROUND: Identifying the functional materials inside vaping devices can help inform efforts to understand risk. While nicotine E-cigarette components and metals have been characterized in several previous studies, the internal component compositions of tetrahydrocannabinol (THC) cartridge designs are not as well known. The 2019-20 e-cigarette or vaping product use associated lung injury (EVALI) outbreak has been associated with THC devices containing vitamin E acetate (VEA), possibly mediated by chemical reactions with internal cartridge components and high filament temperatures. METHODS: We investigate the composition and internal components of 2019 EVALI patient-associated THC vaping devices compared to other THC and nicotine devices from 2016-19, specifically the metal, ceramic, and polymer components likely to be exposed to heat. To do this, we have disassembled forty-eight components from eight used and unused vaping devices under a microscope and analyzed them using X-ray fluorescence, scanning electron microscopy, and Fourier-transform infrared micro-spectroscopy. CONCLUSIONS: The two THC cartridges used by EVALI patients exhibited evidence of localized high temperatures, including charring of the ceramic heating elements and damaged wire surfaces. The newer THC cartridges possessed more ceramic and polymer insulation than older THC or nicotine devices. The combination of ceramics, metals, and high temperatures in newer THC cartridges is consistent with conditions hypothesized to produce VEA reactions during vaping. Nickel and chromium components were detected in all devices, and others contained copper, lead, tin, gold, silicon-rich rubbers, or fluorinated microplastics. These components have the potential to thermally degrade and volatilize if heated sufficiently. These findings do not imply that harmful exposures would occur under all usage conditions, and are most relevant to harm reduction efforts based on avoiding higher internal temperatures. This study was limited to a small sample of cartridges obtained from investigations. Future work should test more device types and internal temperatures under controlled usage conditions.


Asunto(s)
Dronabinol/efectos adversos , Sistemas Electrónicos de Liberación de Nicotina , Lesión Pulmonar/patología , Nicotina/química , Cannabinoides/toxicidad , Cerámica/efectos adversos , Cerámica/química , Brotes de Enfermedades , Dronabinol/química , Calor/efectos adversos , Humanos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/epidemiología , Microscopía Electrónica de Rastreo , Nicotina/efectos adversos , Plásticos/efectos adversos , Polímeros/efectos adversos , Polímeros/química , Goma/efectos adversos , Goma/química , Vapeo/fisiopatología
5.
Anal Methods ; 12(45): 5450-5457, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33135024

RESUMEN

A new protocol for the extraction of microplastic is proposed and demonstrated which combines dissection, ultrasonication, and filtration with chemical dissolution in order to estimate microplastic contamination in fish or other samples with significant biomass. This protocol enables initial characterization of the sample through dissection followed by chemical dissolution to isolate polymer debris while minimizing analytical uncertainties and maintaining microplastic particle integrity. The extraction method begins with dissection and inspection of the stomach contents, followed by pulsed ultrasonic extraction to remove the majority of biomass and surface contaminants. Subsequent chemical dissolution of the extracted contents using KOH and HCl removes any remaining biomass and inorganic interferences. Incorporating chemical dissolution post-extraction minimizes the overall biomass subjected to dissolution, thereby enabling faster processing and subsequently a cleaner sample compared to methods involving digestion of the entire organism. Furthermore, the chemical dissolution step enables direct filter analysis for microplastics, thereby minimizing the potential loss of microplastic particles associated with manual particle transfer. Hence, the microplastic extraction method presented here is suitable for the extraction and identification of small (>20 µm) and potentially brittle microplastic.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Plásticos , Solubilidad , Contaminantes Químicos del Agua/análisis
6.
Environ Pollut ; 233: 1113-1124, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29037491

RESUMEN

Pacific Ocean trawl samples, stomach contents of laboratory-raised fish as well as fish from the subtropical gyres were analyzed by Raman micro-spectroscopy (RMS) to identify polymer residues and any detectable persistent organic pollutants (POP). The goal was to access specific molecular information at the individual particle level in order to identify polymer debris in the natural environment. The identification process was aided by a laboratory generated automated fluorescence removal algorithm. Pacific Ocean trawl samples of plastic debris associated with fish collection sites were analyzed to determine the types of polymers commonly present. Subsequently, stomach contents of fish from these locations were analyzed for ingested polymer debris. Extraction of polymer debris from fish stomach using KOH versus ultrapure water were evaluated to determine the optimal method of extraction. Pulsed ultrasonic extraction in ultrapure water was determined to be the method of choice for extraction with minimal chemical intrusion. The Pacific Ocean trawl samples yielded primarily polyethylene (PE) and polypropylene (PP) particles >1 mm, PE being the most prevalent type. Additional microplastic residues (1 mm - 10 µm) extracted by filtration, included a polystyrene (PS) particle in addition to PE and PP. Flame retardant, deca-BDE was tentatively identified on some of the PP trawl particles. Polymer residues were also extracted from the stomachs of Atlantic and Pacific Ocean fish. Two types of polymer related debris were identified in the Atlantic Ocean fish: (1) polymer fragments and (2) fragments with combined polymer and fatty acid signatures. In terms of polymer fragments, only PE and PP were detected in the fish stomachs from both locations. A variety of particles were extracted from oceanic fish as potential plastic pieces based on optical examination. However, subsequent RMS examination identified them as various non-plastic fragments, highlighting the importance of chemical analysis in distinguishing between polymer and non-polymer residues.


Asunto(s)
Monitoreo del Ambiente , Contenido Digestivo/química , Polímeros/análisis , Residuos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Océano Atlántico , Peces , Océanos y Mares , Océano Pacífico , Plásticos/análisis , Polietileno/análisis , Poliestirenos/análisis , Agua de Mar/química , Espectrometría Raman , Estómago/química
7.
Sci Total Environ ; 603-604: 616-626, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28646780

RESUMEN

Microplastic particles from Atlantic and Pacific Ocean trawls, lab-fed fish guts and ocean fish guts have been characterized using optical microscopy and SEM/EDS in terms of size, morphology, and chemistry. We assessed whether these measurements could serve as a rapid screening process for subsequent identification of the likely microplastic candidates by micro-spectroscopy. Optical microscopy enabled morphological classification of the types of particles or fibers present in the sample, as well as the quantification of particle size ranges and fiber lengths. SEM/EDS analysis was used to rule out non-plastic particles and screen the prepared samples for potential microplastic, based on their element signatures and surface characteristics. Chlorinated plastics such as polyvinyl chloride (PVC) could be easily identified with SEM/EDS due to their unique elemental signatures including chlorine, as could mineral species that are falsely identified as plastics by optical microscopy. Particle morphology determined by optical microscopy and SEM suggests the fish ingested particles contained both degradation fragments from larger plastic pieces and also manufactured microplastics. SEM images of microplastic particle surfaces revealed characteristic cracks consistent with environmental exposure, as well as pigment particles consistent with manufactured materials. Most of the microplastic surfaces in the fish guts and ocean trawls were covered with biofilms, radiolarians, and crustaceans. Many of the fish stomachs contained micro-shell pieces which visually resembled microplastics.


Asunto(s)
Monitoreo del Ambiente , Peces , Contenido Digestivo , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Microscopía , Microscopía Electrónica de Rastreo , Océano Pacífico , Espectrometría por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA