Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 44(21): e2300358, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572054

RESUMEN

Flame retardant treatment of epoxy resins (EP) to reduce their flammability for extending their range of applications attracts considerable attention. However, the synthesis process of conventional flame retardants is complicated and involves organic hazardous solvents. Meanwhile, how to ensure both the flame-retardant and mechanical properties is a long-standing and actual difficult problem. In this work, a supramolecular flame retardant (named ATPFR) is facilely created by one-pot reaction, using cheap and accessible raw materials in an ecologically benign aqueous solvent. ATPFR is applied to improve the fire safety of EP. With only 5 wt% ATPFR addition, EP can reach the limiting oxygen index of 28.5% and the UL-94 V-0 rating with a significant "blow-out effect." The cone calorimetry test reveals that the EP thermoset with 5 wt% ATPFR has a 75.8% reduction in the peak heat release rate (p-HRR) and a 67.3% reduction in the peak smoke production rate (p-SPR), respectively, compared with the pure EP. Additionally, EP composites with the small amount of ATPFR exhibit a slight decrease and maintain good mechanical properties. Therefore, the facile synthesis and application of this supramolecular flame retardant provide a reliable way for the construction of polymer materials with environment-friendly and effective flame-retardant system.


Asunto(s)
Resinas Epoxi , Retardadores de Llama , Calorimetría , Calor , Oxígeno , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA