Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Oral Health ; 22(1): 391, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088323

RESUMEN

BACKGROUND: When evaluating the efficacy and safety of various desensitizing products in vitro, their mechanism of action and clinical utility should be considered during test model selection. This study aimed to evaluate the effects of two desensitizers, an in-office use material and an at-home use material, on dentin specimen permeability, and their dentin barrier cytotoxicity with appropriate test models. METHODS: Two materials, GLUMA desensitizer (GLU) containing glutaraldehyde and remineralizing and desensitizing gel (RD) containing sodium fluoride and fumed silica, were selected. Human dentin specimens were divided into three groups (n = 6): in groups 1 and 2, GLU was applied, and in group 3, RD was applied and immersed in artificial saliva (AS) for 24 h. Dentin specimen permeability before and after each treatment/post-treatment was measured using a hydraulic device under a pressure of 20 cm H2O. The perfusion fluid was deionized water, except in group 2 where 2% bovine serum albumin (BSA) was used. The representative specimens before and after treatment from each group were investigated using scanning electron microscopy. To measure cytotoxicity, test materials were applied to the occlusal surfaces of human dentin disks under which three-dimensional cell scaffolds were placed. After 24-h contact within the test device, cell viability was measured via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. RESULTS: GLU significantly reduced the dentin permeability and occluded the dentinal tubules when 2% BSA was used as perfusion fluid. RD significantly reduced dentin permeability and occluded the tubules, but permeability rebounded after AS immersion. GLU significantly decreased cell viability, but RD was non-cytotoxic. CONCLUSIONS: In vitro GLU application induced effective dentinal tubule occlusion only following the introduction of simulated dentinal fluid. RD provided effective tubule occlusion, but its full remineralization potential was not realized after a short period of immersion in AS. GLU may harm the pulp, whereas RD is sufficiently biocompatible.


Asunto(s)
Desensibilizantes Dentinarios , Sensibilidad de la Dentina , Dentina , Desensibilizantes Dentinarios/farmacología , Desensibilizantes Dentinarios/uso terapéutico , Permeabilidad de la Dentina , Sensibilidad de la Dentina/tratamiento farmacológico , Humanos , Ensayo de Materiales
2.
J Xray Sci Technol ; 26(1): 133-140, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480235

RESUMEN

Cone beam computed tomography (CBCT) has obvious advantages over regular radiography in diagnosis of complex diseases. Objective of this study is to report a case of a mandibular jaw ameloblastoma recurring cyst, which represents a benign tumor of odontogenic epithelium, using CBCT imaging technology. CBCT examination of the patient suffering with recurrent lower jaw cyst (relapsing four years after surgery) showed a decrease in irregular bone density and appearance of a honeycomb pattern (3.5 cm×2.5 cm×1.8 cm) in the right lower jaw. This suggests that the lesion is more likely to be an ameloblastoma. Preoperative tissue biopsy and pathological examination of surgical sample confirmed the diagnosis. Surgical resection of the diseased tissue and autogenous bone grafting in the mandible was performed. Postoperative CBCT examination showed that the bone defect healed well, without recurrence of the tumor 22 months postoperatively. In conclusion, the rotated 3D CBCT images clearly displays the exact size, location, borders and internal changes of the tumor in the jaw cyst itself and the adjacent tissues. Thus, the dental CBCT allows clinicians to better evaluate lesions, leading to better treatment outcomes.


Asunto(s)
Ameloblastoma/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Imagenología Tridimensional/métodos , Neoplasias Maxilomandibulares/diagnóstico por imagen , Adulto , Ameloblastoma/cirugía , Femenino , Humanos , Neoplasias Maxilomandibulares/cirugía , Mandíbula/diagnóstico por imagen , Mandíbula/cirugía , Diente/diagnóstico por imagen , Diente/cirugía
3.
Cell Physiol Biochem ; 41(5): 1725-1735, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28365680

RESUMEN

BACKGROUND/AIMS: Periapical periodontitis is a common oral disease caused by bacterial invasion of the tooth pulp, which usually leads to local release of pro-inflammatory cytokines and osteolytic lesion. This study is intended to examine the effect of TNF-α on BMP9-induced osteogenic differentiation of the stem cells of dental apical papilla (SCAPs). METHODS: Rat model of periapical periodontitis was established. TNF-α expression was assessed. Osteogenic markers and ectopic bone formation in iSCAPs were analyzed upon BMP9 and TNF-α treatment. RESULTS: Periapical periodontitis was successfully established in rat immature permanent teeth with periapical lesions, in which TNF-α was shown to release during the inflammatory phase. BMP9-induced alkaline phosphatase activity, the expression of osteocalcin and osteopontin, and matrix mineralization in iSCAPs were inhibited by TNF-α in a dose-dependent fashion, although increased AdBMP9 partially overcame TNF-α inhibition. Furthermore, high concentration of TNF-α effectively inhibited BMP9-induced ectopic bone formation in vivo. CONCLUSION: TNF-α plays an important role in periapical bone defect during the inflammatory phase and inhibits BMP9-induced osteoblastic differentiation of iSCAPs, which can be partially reversed by high levels of BMP9. Therefore, BMP9 may be further explored as a potent osteogenic factor to improve osteo/odontogenic differentiation in tooth regeneration in chronic inflammation conditions.


Asunto(s)
Diferenciación Celular , Factor 2 de Diferenciación de Crecimiento/metabolismo , Odontoblastos/metabolismo , Periodontitis Periapical/metabolismo , Células Madre/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Fosfatasa Alcalina/biosíntesis , Animales , Inducción Enzimática , Masculino , Odontoblastos/patología , Periodontitis Periapical/patología , Ratas , Ratas Sprague-Dawley , Células Madre/patología
4.
Carbohydr Polym ; 346: 122648, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245508

RESUMEN

Uncontrolled non-compressible hemorrhage, which is often accompanied by coagulopathy, is a major cause of mortality following traumatic injuries in civilian and military populations. In this study, coagulopathy-independent injectable catechol-modified chitosan (CS-HCA) hemostatic materials featuring rapid shape recovery were fabricated by combining controlled sodium tripolyphosphate-crosslinking with hydrocaffeic acid (HCA) grafting. CS-HCA exhibited robust mechanical strength and rapid blood-triggered shape recovery. Furthermore, CS-HCA demonstrated superior blood-clotting ability, enhanced blood cell adhesion and activation, and greater protein adsorption than commercial hemostatic gauze and Celox. CS-HCA showed enhanced procoagulant and hemostatic capacities in a lethal liver-perforation wound model in rabbits, particularly in heparinized rabbits. CS-HCA is suitable for mass manufacturing and shows promise as a clinically translatable hemostat.


Asunto(s)
Catecoles , Quitosano , Hemorragia , Hemostáticos , Quitosano/química , Quitosano/farmacología , Animales , Conejos , Catecoles/química , Catecoles/farmacología , Hemorragia/tratamiento farmacológico , Hemostáticos/química , Hemostáticos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Masculino , Materiales Inteligentes/química , Inyecciones
5.
Acta Biomater ; 169: 19-44, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517617

RESUMEN

Titanium (Ti) and Ti alloys are commonly used in dental implants, which have good biocompatibility, mechanical strength, processability, and corrosion resistance. However, the surface inertia of Ti implants leads to delayed integration of Ti and new bone, as well as problems such as aseptic loosening and inadequate osseointegration. Magnesium (Mg) ions can promote bone regeneration, and many studies have used Mg-containing materials to modify the Ti implant surface. This systematic review summarizes the methods, effects, and clinical applications of surface modification of Ti implants with Mg-containing coatings. Database collection was completed on Janury 1, 2023, and a total of 29 relevant studies were ultimately included. Mg can be compounded with different materials and coated to the surface of Ti implants using different methods. In vitro and in vivo experiments have shown that Mg-containing coatings promote cell adhesion and osteogenic differentiation. On the one hand, the surface roughness of implants increases with the addition of Mg-containing coatings, which is thought to have an impact on the osseointegration of the implant. On the other hand, Mg ions promote cell attachment through binding interactions between the integrin family and FAK-related signaling pathways. And Mg ions could induce osseointegration by activating PI3K, Notch, ERK/c-Fos, BMP-4-related signaling pathways and TRPM7 protein channels. Overall, Mg-based coatings show great potential for the surface modification of Ti implants to promote osseointegration. STATEMENT OF SIGNIFICANCE: The inertia surface of titanium (Ti) implants leads to delayed osseointegration. Magnesium (Mg) ions, known for promoting bone regeneration, have been extensively studied to modify the surface of Ti implants. However, no consensus has been reached on the appropriate processing methods, surface roughness and effective concentration of Mg-containing coatings for osseointegration. This systematic review focus on the surface modification of Ti implants with Mg-containing compounds, highlighting the effects of Mg-containing coatings on the surface properties of Ti implants and its associated mechanisms. Besides, we also provide an outlook on future directions to promote the clinical application of Mg-modified implants.


Asunto(s)
Oseointegración , Osteogénesis , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Iones/farmacología , Magnesio/farmacología , Propiedades de Superficie , Titanio/farmacología , Titanio/química
6.
Int J Oral Maxillofac Implants ; 36(4): e63-e71, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34411208

RESUMEN

PURPOSE: This study aimed to investigate whether axial or radial functionally graded root analog implants can optimize the stress and strain distribution near the implant-bone interface in alveolar bone models under static loads using finite element analysis (FEA). MATERIALS AND METHODS: The 3D profile of the root analog implant was captured from a natural tooth in CBCT data. The implant was separated into different layers (3, 5, and 10 layers) to vary the Young modulus axially or radially. The variation in Young modulus was designed to be linear, exponential, or parabolic. Different occlusal loads were applied. The von Mises stress and strain were used to evaluate the system risk of failure. RESULTS: The difference in the numbers of layers had no significant effect on the alveolar bone. In the radial functionally graded implant models, the maximum von Mises stress of the alveolar bone decreased as the outer layer's elastic modulus increased; however, in the vertical functionally graded implants, this stress varied little. The maximum von Mises stress of the cancellous bone changed only slightly, from 2 to 5 MPa in all models. The maximum strain of the alveolar bone varied from 0.001478 mm to 0.003999 mm. Those FEA results were in line with previous findings. CONCLUSION: The functionally graded root analog implants show no significant biomechanical advantages over dense zirconia implants. Radial functionally graded root analog implants should optimize the peri-implant stresses and are biomechanically favorable for design.


Asunto(s)
Implantes Dentales , Fenómenos Biomecánicos , Simulación por Computador , Implantes Dentales/efectos adversos , Análisis del Estrés Dental , Análisis de Elementos Finitos , Humanos , Estrés Mecánico
7.
Cell Prolif ; 54(4): e13016, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33660290

RESUMEN

OBJECTIVES: Mouse incisor mesenchymal stem cells (MSCs) have self-renewal ability and osteo/odontogenic differentiation potential. However, the mechanism controlling the continuous self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs remains unclear. Special AT-rich sequence-binding protein 2 (SATB2) positively regulates craniofacial patterning, bone development and regeneration, whereas SATB2 deletion or mutation leads to craniomaxillofacial dysplasia and delayed tooth and root development, similar to bone morphogenetic protein (BMP) loss-of-function phenotypes. However, the detailed mechanism underlying the SATB2 role in odontogenic MSCs is poorly understood. The aim of this study was to investigate whether SATB2 can regulate self-renewal and osteo/odontogenic differentiation of odontogenic MSCs. MATERIALS AND METHODS: Satb2 expression was detected in the rapidly renewing mouse incisor mesenchyme by immunofluorescence staining, quantitative RT-PCR and Western blot analysis. Ad-Satb2 and Ad-siSatb2 were constructed to evaluate the effect of Satb2 on odontogenic MSCs self-renewal and osteo/odontogenic differentiation properties and the potential role of Satb2 with the osteogenic factor bone morphogenetic protein 9 (Bmp9) in vitro and in vivo. RESULTS: Satb2 was found to be expressed in mesenchymal cells and pre-odontoblasts/odontoblasts. We further discovered that Satb2 effectively enhances mouse incisor MSCs self-renewal. Satb2 acted synergistically with the potent osteogenic factor Bmp9 in inducing osteo/odontogenic differentiation of mouse incisor MSCs in vitro and in vivo. CONCLUSIONS: Satb2 promotes self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs. Thus, Satb2 can cooperate with Bmp9 as a new efficacious bio-factor for osteogenic regeneration and tooth engineering.


Asunto(s)
Diferenciación Celular , Factor 2 de Diferenciación de Crecimiento/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Células Madre Mesenquimatosas/citología , Odontoblastos/citología , Factores de Transcripción/metabolismo , Adenoviridae/genética , Animales , Regeneración Ósea , Adhesión Celular , Línea Celular , Proliferación Celular , Autorrenovación de las Células , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Factor 2 de Diferenciación de Crecimiento/genética , Hidrogeles/química , Incisivo/citología , Proteínas de Unión a la Región de Fijación a la Matriz/antagonistas & inhibidores , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Odontoblastos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Andamios del Tejido/química , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
8.
Stem Cells Dev ; 29(16): 1059-1072, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32484035

RESUMEN

Dental mesenchymal stem cells (MSCs) are recognized as a critical factor in repair of defective craniofacial bone owing to the multiple differentiation potential, the ability to regenerate distinct tissues, and the advantage that they can be easily obtained by relatively noninvasive procedures. Special AT-rich sequence-binding protein 2 (SATB2) is a nuclear matrix protein, involved in chromatin remodeling and transcriptional regulation, and has been reported to be as a positive regulator of osteoblast differentiation, bone formation, and bone regeneration in MSCs. In this study, we systematically investigated the capability of SATB2 to promote the osteogenic differentiation of periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and stem cells from human exfoliated deciduous teeth (SHED). RNA-seq analysis and quantitative real-time PCR (RT-PCR) revealed that genes regulating osteogenic differentiation were differentially expressed among three cell types and SATB2 was found to be expressed at a relatively high level. When the three cell types overexpressed SATB2 with AdSATB2 infection, alkaline phosphatase (ALP) staining, ALP activity, Alizarin Red S staining, and quantification tended to increase with an increasing infection rate. It showed opposite results after infection with AdsiSATB2. RNA-seq analysis indicated that the expression of downstream osteogenic genes was affected by AdSATB2 infection and quantitative RT-PCR confirmed that nine osteogenic genes (Spp1, Sema7a, Atf4, Ibsp, Col1a1, Sp7, Igfbp3, Dlx3, and Alpl) were upregulated, to various extents, following SATB2 overexpression. In addition, quantitative PCR results indicated that SATB2 affected the expression of MSC markers. These results suggested an important role of SATB2 in the osteogenesis of PDLSCs, DPSCs, and SHED. Further research is warranted to investigate SATB2-mediated regulation of osteogenic differentiation and to evaluate the therapeutic use of SATB2 for the regeneration of defective craniofacial bone tissue.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Diente/citología , Factores de Transcripción/metabolismo , Adolescente , Biomarcadores/metabolismo , Diferenciación Celular/genética , Pulpa Dental/citología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Osteogénesis/genética , Ligamento Periodontal/citología , Reproducibilidad de los Resultados , Exfoliación Dental , Diente Primario/citología , Factores de Transcripción/genética
9.
Stem Cells Dev ; 28(10): 683-694, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30816068

RESUMEN

Tooth development is regulated by sequential and reciprocal epithelium-mesenchymal interactions and their related molecular signaling pathways, such as bone morphogenetic proteins (BMPs). Among the 14 types of BMPs, BMP9 (also known as growth differentiation factor 2) is one of the most potent BMPs to induce osteogenic differentiation of mesenchymal stem cells. The purpose of this study was to examine potential roles of BMP9 signaling in tooth development. First, we detected the expression pattern of BMP9 in tooth germ during postnatal tooth development, and we found that BMP9 was widely expressed in odontoblasts, ameloblasts, dental pulp cells, and osteoblasts in alveolar bones. Then, we established a BMP9-KO mouse model. Gross morphological examination revealed that the tooth cusps of BMP9-KO mice were significantly abraded with shorter roots. Micro-computed tomography and three-dimensional reconstruction analysis indicated that the first molars of the BMP9-KO mice exhibited a reduced thickness dentin, enlarged pulp canals, and shortened roots, resembling the phenotypes of the common hereditary dental disease dentinogenesis imperfecta. Further, the alveolar bone of the BMP9-KO mutants was found to be shorter and had a decreased mineral density and trabecular thickness and bone volume fraction compared with that of the wild-type control. Mechanistically, we demonstrated that both dentin sialophosphoprotein and dentin matrix protein 1 were induced in dental stem cells by BMP9, whereas their expression was reduced when BMP9 was silenced. Further studies are required to determine whether loss of or decreased BMP9 expression is clinically associated with dentinogenesis imperfecta. Collectively, our results strongly suggest that BMP9 may play an important role in regulating dentinogenesis and tooth development. Further research is recommended into the therapeutic uses of BMP9 to regenerate traumatized and diseased tissues and for the bioengineering of replacement teeth.


Asunto(s)
Dentina/crecimiento & desarrollo , Factor 2 de Diferenciación de Crecimiento/genética , Odontogénesis/fisiología , Diente/crecimiento & desarrollo , Ameloblastos/metabolismo , Animales , Diferenciación Celular , Pulpa Dental/metabolismo , Dentinogénesis Imperfecta/genética , Transición Epitelial-Mesenquimal/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/genética , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Odontoblastos/metabolismo , Osteoblastos/metabolismo , Osteogénesis/fisiología , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Germen Dentario/metabolismo
10.
ACS Appl Mater Interfaces ; 7(20): 10872-7, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-25941905

RESUMEN

Electrospinning is a technique for creating continuous nanofibrous networks that can architecturally be similar to the structure of extracellular matrix (ECM). However, the shrinkage of electrospun mats is unfavorable for the triggering of cell adhesion and further growth. In this work, electrospun PLGA nanofiber assemblies are utilized to create a scaffold. Aided by a polypropylene auxiliary supporter, the scaffold is able to maintain long-term integrity without dimensional shrinkage. This scaffold is also able to suspend in cell culture medium; hence, keratinocyte cells seeded on the scaffold are exposed to air as required in skin tissue engineering. Experiments also show that human skin keratinocytes can proliferate on the scaffold and infiltrate into the scaffold.


Asunto(s)
Queratinocitos/citología , Ácido Láctico/química , Nanofibras/química , Ácido Poliglicólico/química , Piel Artificial , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Vendajes , Proliferación Celular/fisiología , Células Cultivadas , Galvanoplastia/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Queratinocitos/fisiología , Masculino , Ensayo de Materiales , Nanofibras/ultraestructura , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA