Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 214: 112486, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35364454

RESUMEN

Low surface energy materials with micro-nano structures have been widely developed to prevent non-specific adhesion of biomolecules. Herein we put forward a new approach based on the antifouling and self-assembly properties of fluorine components, to construct a non-specific protein resistance surface with selective protein adsorption property. Briefly, the antifouling surface (SN-F) was obtained by a simple one-step modification on silicon nanowire arrays (SiNWAs) with fluorine coupling agent 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane (FAS). And protein was fluorinated by conjugation with an amphiphilic fluoro-copolymer, produced from 2-methacrylamido glucopyranose (MAG) and trifluoroethyl methacrylate (TFEMA) via RAFT polymerization. The properties of the materials were characterized by 1H nuclear magnetic resonance (1H NMR), infrared spectroscopy (FTIR), water contact angle, and X-ray photoelectron spectroscopy (XPS) etc., and protein adsorption was investigated by protein content measurement, fluorescence detection, and electrophoresis. It was observed that the adsorption for native proteins on SN-F was at an extremely low level, while the adsorption for the fluoro-copolymer conjugated protein (PFG-BSA) was significantly increased. When the percentage of TFEMA in the fluoro-copolymer was as high as 52.0%, the fluorinated protein adsorbed on SN-F was more than 35 times of native proteins on the surface. Moreover, the platform could resist IgG adhesion in serum after the adsorption of fluorinated protein, and it could be recycled three times after 75% ethanol treatment. In conclusion, SN-F showed non-specific protein resistance through low surface energy and specific protein adsorption by fluorine-fluorine self-assembly. The fluorinated nanostructured platform has a great potential in controlling protein adsorption and release.


Asunto(s)
Flúor , Metacrilatos , Adsorción , Flúor/química , Metacrilatos/química , Polimerizacion , Polímeros/química , Proteínas , Propiedades de Superficie
2.
Int J Nanomedicine ; 14: 1849-1863, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30880984

RESUMEN

Background: Despite titanium (Ti) implants have been commonly used in the medical device field due to their superior biocompatibility, implant-associated bacterial infection remains a major clinical complication. Nanosilver, an effective antibacterial agent against a wide spectrum of bacterial strains, with a low-resistance potential, has attracted much interest too. Incorporation of nanosilver on Ti implants may be a promising approach to prevent biofilm formation. Purpose: The objective of the study was to investigate the antibacterial effects and osteoinductive properties of nanosilver/poly (dl-lactic-co-glycolic acid)-coated titanium (NSPTi). Methods: Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and the Gram-negative opportunistic pathogen Pseudomonas aeruginosa (PAO-1) were used to evaluate the antibacterial activity of NSPTi implants through the analysis of bacterial colonization in vitro and in vivo. Furthermore, we examined the osteoinductive potential of NSPTi implants by investigating the proliferation and differentiation of MC3T3-E1 preosteoblast cells. In vivo, the osteoinductive properties of NSPTi implants were assessed by radiographic evaluation, H&E staining, and Masson's trichrome staining. Results: In vitro, bacterial adhesion to the 2% NSPTi was significantly inhibited and <1% of adhered bacteria survived after 24 hours. In vitro, the average colony-forming units (CFU)/g ratios in the 2% NSPTi with 103 CFU MRSA and PAO-1 were 1.50±0.68 and 1.75±0.6, respectively. In the uncoated Ti groups, the ratios were 1.03±0.82×103 and 0.94±0.49×103, respectively. These results demonstrated that NSPTi implants had prominent antibacterial properties. Proliferation of MC3T3-E1 cells on the 2% NSPTi sample was 1.51, 1.78, and 2.22 times that on the uncoated Ti control after 3, 5, and 7 days' incubation, respectively. Furthermore, NSPTi implants promoted the maturation and differentiation of MC3T3-E1 cells. In vivo, NSPTi accelerated the formation of new bone while suppressing bacterial survival. Conclusion: NSPTi implants have simultaneous antibacterial and osteoinductive activities and therefore have the potential in clinical applications.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas/química , Oseointegración/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Prótesis e Implantes , Plata/farmacología , Titanio/farmacología , Animales , Línea Celular , Materiales Biocompatibles Revestidos/farmacología , Recuento de Colonia Microbiana , Humanos , Cinética , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Ratones , Pruebas de Sensibilidad Microbiana , Osteogénesis/efectos de los fármacos , Conejos , Propiedades de Superficie , Tibia/diagnóstico por imagen , Tibia/efectos de los fármacos , Tibia/microbiología , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA