Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(2): 201-210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38012344

RESUMEN

Bacteria can be programmed to create engineered living materials (ELMs) with self-healing and evolvable functionalities. However, further development of ELMs is greatly hampered by the lack of engineerable nonpathogenic chassis and corresponding programmable endogenous biopolymers. Here, we describe a technological workflow for facilitating ELMs design by rationally integrating bioinformatics, structural biology and synthetic biology technologies. We first develop bioinformatics software, termed Bacteria Biopolymer Sniffer (BBSniffer), that allows fast mining of biopolymers and biopolymer-producing bacteria of interest. As a proof-of-principle study, using existing pathogenic pilus as input, we identify the covalently linked pili (CLP) biosynthetic gene cluster in the industrial workhorse Corynebacterium glutamicum. Genetic manipulation and structural characterization reveal the molecular mechanism of the CLP assembly, ultimately enabling a type of programmable pili for ELM design. Finally, engineering of the CLP-enabled living materials transforms cellulosic biomass into lycopene by coupling the extracellular and intracellular bioconversion ability.


Asunto(s)
Bacterias , Ingeniería Metabólica , Flujo de Trabajo , Licopeno , Biopolímeros
2.
Plant J ; 113(5): 1021-1034, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36602036

RESUMEN

Saururus chinensis, an herbaceous magnoliid without perianth, represents a clade of early-diverging angiosperms that have gone through woodiness-herbaceousness transition and pollination obstacles: the characteristic white leaves underneath inflorescence during flowering time are considered a substitute for perianth to attract insect pollinators. Here, using the newly sequenced S. chinensis genome, we revisited the phylogenetic position of magnoliids within mesangiosperms, and recovered a sister relationship for magnoliids and Chloranthales. By considering differentially expressed genes, we identified candidate genes that are involved in the morphogenesis of the white leaves in S. chinensis. Among those genes, we verified - in a transgenic experiment with Arabidopsis - that increasing the expression of the "pseudo-etiolation in light" gene (ScPEL) can inhibit the biosynthesis of chlorophyll. ScPEL is thus likely responsible for the switches between green and white leaves, suggesting that changes in gene expression may underlie the evolution of pollination strategies. Despite being an herbaceous plant, S. chinensis still has vascular cambium and maintains the potential for secondary growth as a woody plant, because the necessary machinery, i.e., the entire gene set involved in lignin biosynthesis, is well preserved. However, similar expression levels of two key genes (CCR and CAD) between the stem and other tissues in the lignin biosynthesis pathway are possibly associated with the herbaceous nature of S. chinensis. In conclusion, the S. chinensis genome provides valuable insights into the adaptive evolution of pollination in Saururaceae and reveals a possible mechanism for the evolution of herbaceousness in magnoliids.


Asunto(s)
Arabidopsis , Magnoliopsida , Saururaceae , Filogenia , Polinización/genética , Lignina , Magnoliopsida/genética
3.
Small ; 20(22): e2308514, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098438

RESUMEN

Highly robust flexible multifunctional film with excellent electromagnetic interference shielding and electrothermal/photothermal characteristics are highly desirable for aerospace, military, and wearable devices. Herein, an asymmetric gradient multilayer structured bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx (BC@Fe3O4/CNT/Ti3C2Tx) multifunctional composite film is fabricated with simultaneously demonstrating fast Joule response, excellent EMI shielding effectiveness (EMI SE) and photothermal conversion properties. The asymmetric gradient 6-layer composite film with 40% of Ti3C2Tx possesses excellent mechanical performance with exceptional tensile strength (76.1 MPa), large strain (14.7%), and good flexibility. This is attributed to the asymmetric gradient multilayer structure designed based on the hydrogen bonding self-assembly strategy between Ti3C2Tx and BC. It achieved an EMI SE of up to 71.3 dB, which is attributed to the gradient "absorption-reflection-reabsorption" mechanism. Furthermore, this composite film also exhibits excellent low-voltage-driven Joule heating (up to 80.3 °C at 2.5 V within 15 s) and fast-response photothermal performance (up to 101.5 °C at 1.0 W cm-2 within 10 s), which is attributed to the synergistic effect of heterostructure. This work demonstrates the fabrication of multifunctional bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx composite film has promising potentials for next-generation wearable electronic devices in energy conversion, aerospace, and artificial intelligence.


Asunto(s)
Celulosa , Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Celulosa/química , Nanotubos de Carbono/química , Titanio/química , Bacterias , Nanocompuestos/química
4.
Electrophoresis ; 45(3-4): 327-332, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38010589

RESUMEN

Hand, foot, and mouth disease is a serious public health problem, and the main pathogen is enterovirus 71 (EV71). Its capsid assembly mechanism including capsid protein processing has been widely studied. Full and empty capsids have different immunological efficacy. Therefore, tracking full/empty capsid ratio throughout the EV71 production process is important to ensure consistent product quality and proper dosing response. The analysis of full/empty capsid ratio of intact virus has been widely reported as well. A variety of techniques have been employed to evaluate the full/empty capsid ratios. However, there has not been a rapid, reproducible, and robust assay to determine the full/empty capsid ratios of final and in-process products. In this study, a novel assay based on capillary zone electrophoresis was established. The separation of full and empty species could be achieved within 10 min and the ratio of peak areas was used to calculate the full/empty capsid ratio directly. The results showed good reproducibility and linearity for the determination of full/empty capsid ratios.


Asunto(s)
Enterovirus Humano A , Enterovirus Humano A/metabolismo , Reproducibilidad de los Resultados , Proteínas de la Cápside , Cápside/metabolismo , Procesamiento Proteico-Postraduccional
5.
Environ Sci Technol ; 58(9): 4060-4069, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331396

RESUMEN

Microplastic pollution, an emerging pollution issue, has become a significant environmental concern globally due to its ubiquitous, persistent, complex, toxic, and ever-increasing nature. As a multifaceted and diverse suite of small plastic particles with different physicochemical properties and associated matters such as absorbed chemicals and microbes, future research on microplastics will need to comprehensively consider their multidimensional attributes. Here, we introduce a novel, conceptual framework of the "microplastome", defined as the entirety of various plastic particles (<5 mm), and their associated matters such as chemicals and microbes, found within a sample and its overall environmental and toxicological impacts. As a novel concept, this paper aims to emphasize and call for a collective quantification and characterization of microplastics and for a more holistic understanding regarding the differences, connections, and effects of microplastics in different biotic and abiotic ecosystem compartments. Deriving from this lens, we present our insights and prospective trajectories for characterization, risk assessment, and source apportionment of microplastics. We hope this new paradigm can guide and propel microplastic research toward a more holistic era and contribute to an informed strategy for combating this globally important environmental pollution issue.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/toxicidad , Ecosistema , Estudios Prospectivos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/toxicidad
6.
J Oral Rehabil ; 51(8): 1555-1565, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38736104

RESUMEN

BACKGROUND: Obstructive sleep apnea hypopnea syndrome (OSAHS) is a serious and potentially life-threatening disease. Mandibular advancement device (MAD) has the characteristics of non-invasive, comfortable, portable and low-cost, making it the preferred treatment for mild-to-moderate OSAHS. Our previous studies found that abnormal contractility and fibre type distribution of the genioglossus could be caused by OSAHS. However, whether the mitochondria participate in these tissue changes is unclear. The effect of MAD treatment on the mitochondria of the genioglossus in OSAHS is also uncertain. OBJECTIVE: To examine the morphology and function of mitochondria from the genioglossus in a rabbit model of obstructive sleep apnea-hypopnea syndrome (OSAHS), as well as these factors after insertion of a mandibular advancement device (MAD). METHODS: Thirty male New Zealand white rabbits were randomised into three groups: control, OSAHS and MAD, with 10 rabbits in each group. Animals in Group OSAHS and Group MAD were induced to develop OSAHS by injection of gel into the submucosal muscular layer of the soft palate. The rabbits in Group MAD were fitted with a MAD. The animals in the control group were not treated. Further, polysomnography (PSG) and cone-beam computed tomography (CBCT) scan were used to measure MAD effectiveness. CBCT of the upper airway and PSG suggested that MAD was effective. Rabbits in the three groups were induced to sleep for 4-6 h per day for eight consecutive weeks. The genioglossus was harvested and detected by optical microscopy and transmission electron microscopy. The mitochondrial membrane potential was determined by laser confocal microscopy and flow cytometry. Mitochondrial complex I and IV activities were detected by mitochondrial complex assay kits. RESULTS: OSAHS-like symptoms were induced successfully in Group OSAHS and rescued by MAD treatment. The relative values of the mitochondrial membrane potential, mitochondrial complex I activity and complex IV activity were significantly lower in Group OSAHS than in the control group; however, there was no significant difference between Group MAD and the control group. The OSAHS-induced injury and the dysfunctional mitochondria of the genioglossus muscle were reduced by MAD treatment. CONCLUSION: Damaged mitochondrial structure and function were induced by OSAHS and could be attenuated by MAD treatment.


Asunto(s)
Modelos Animales de Enfermedad , Avance Mandibular , Mitocondrias , Apnea Obstructiva del Sueño , Animales , Conejos , Apnea Obstructiva del Sueño/terapia , Apnea Obstructiva del Sueño/fisiopatología , Avance Mandibular/instrumentación , Avance Mandibular/métodos , Masculino , Lengua/fisiopatología , Lengua/patología
7.
J Environ Manage ; 365: 121525, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897085

RESUMEN

As an important part of the membrane field, hollow fiber membranes (HFM) have been widely concerned by scholars. HFM fouling in the industrial application results in a reduction in its lifespan and an increase in cost. In recent years, various explorations on the HFM fouling control strategies have been carried out. In the current work, we critically review the influence of flow field characteristics in HFM-based bioreactor on membrane fouling control. The flow field characteristics mainly refer to the spatial and temporal variation of the related physical parameters. In the HFM field, the physical parameter mainly refers to the variation characteristics of the shear force, flow velocity and turbulence caused by hydraulics. The factors affecting the flow field characteristics will be discussed from three levels: the micro-flow field near the interface of membrane (micro-interface), the flow field around the membrane module and the reactor design related to flow field, which involves surface morphology, crossflow, aeration, fiber packing density, membrane vibration, structural design and other related parameters. The study of flow field characteristics and influencing factors in the HFM separation process will help to improve the performance of HFM in full-scale water treatment plants.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Purificación del Agua/métodos , Purificación del Agua/instrumentación
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 604-611, 2024 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-38932548

RESUMEN

The surface morphology of titanium metal is an important factor affecting its hydrophilicity and biocompatibility, and exploring the surface treatment strategy of titanium metal is an important way to improve its biocompatibility . In this study , titanium (TA4) was firstly treated by large particle sand blasting and acid etching (SLA) technology, and then the obtained SLA-TA4 was treated by single surface treatments such as alkali-heat, ultraviolet light and plasma bombardment. According to the experimental results, alkali-heat treatment is the best treatment method to improve and maintain surface hydrophilicity of titanium. Then, the nanowire network morphology of titanium surface and its biological property, formed by further surface treatments on the basis of alkali-heat treatment, were investigated. Through the cell adhesion experiment of mouse embryonic osteoblast cells (MC3T3-E1), the ability of titanium material to support cell adhesion and cell spreading was investigated after different surface treatments. The mechanism of biological activity difference of titanium surface formed by different surface treatments was investigated according to the contact angle, pit depth and roughness of the titanium sheet surface. The results showed that the SLA-TA4 titanium sheet after a treatment of alkali heat for 10 h and ultraviolet irradiation for 1 h has the best biological activity and stability. From the perspective of improving surface bioactivity of medical devices, this study has important reference value for relevant researches on surface treatment of titanium implantable medical devices.


Asunto(s)
Materiales Biocompatibles , Adhesión Celular , Osteoblastos , Prótesis e Implantes , Propiedades de Superficie , Titanio , Titanio/química , Animales , Ratones , Osteoblastos/citología , Ensayo de Materiales , Línea Celular , Rayos Ultravioleta , Interacciones Hidrofóbicas e Hidrofílicas
9.
Environ Sci Technol ; 57(36): 13588-13600, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37647508

RESUMEN

Although our understanding of the effects of microplastics on the dynamics of soil organic matter (SOM) has considerably advanced in recent years, the fundamental mechanisms remain unclear. In this study, we examine the effects of polyethylene and poly(lactic acid) microplastics on SOM processes via mineralization incubation. Accordingly, we evaluated the changes in carbon dioxide (CO2) and methane (CH4) production. An O2 planar optical sensor was used to detect the temporal behavior of dissolved O2 during incubation to determine the microscale oxygen heterogeneity caused by microplastics. Additionally, the changes in soil dissolved organic matter (DOM) were evaluated using a combination of spectroscopic approaches and ultrahigh-resolution mass spectrometry. Microplastics increased cumulative CO2 emissions by 160-613%, whereas CH4 emissions dropped by 45-503%, which may be attributed to the oxygenated porous habitats surrounding microplastics. Conventional and biodegradable microplastics changed the quantities of soil dissolved organic carbon. In the microplastic treatments, DOM with more polar groups was detected, suggesting a higher level of electron transport. In addition, there was a positive correlation between the carbon concentration, electron-donating ability, and CO2 emission. These findings suggest that microplastics may facilitate the mineralization of SOM by modifying O2 microenvironments, DOM concentration, and DOM electron transport capability. Accordingly, this study provides new insights into the impact of microplastics on soil carbon dynamics.


Asunto(s)
Microplásticos , Plásticos , Transporte de Electrón , Dióxido de Carbono , Electrones , Materia Orgánica Disuelta , Oxígeno , Polietileno
10.
J Periodontal Res ; 58(2): 369-380, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36691896

RESUMEN

BACKGROUND AND OBJECTIVES: Periodontitis, which is a chronic inflammatory periodontal disease resulting in destroyed periodontal tissue, is the leading cause of tooth loss in adults. Many studies have found that inflammatory immune responses are involved in the risk of periodontal tissue damage. Therefore, we analyzed the association between immunity and periodontitis using bioinformatics methods to further understand this disease. MATERIALS AND METHODS: First, the expression profiles of periodontitis and healthy samples were downloaded from the GEO database, including a training dataset GSE16134 and an external validation dataset GSE10334. Then, differentially expressed genes were identified using the limma package. Subsequently, immune cell infiltration was calculated by using the CIBERSORT algorithm. We further identified genes linking periodontitis and immunity from the ImmPort and DisGeNet databases. In addition, some of them were selected to construct a diagnostic model via a logistic stepwise regression analysis. RESULTS AND CONCLUSIONS: Two hundred sixty differentially expressed genes were identified and found to be involved in responses to bacterial and immune-related processes. Subsequently, immune cell infiltration analysis demonstrates significant differences in the abundance of most immune cells between periodontitis and healthy samples, especially in plasma cells. These results suggested that immunity doses play a non-negligible role in periodontitis. Twenty-one genes linking periodontitis and immunity were further identified. And nine hub genes of them were identified that may be key genes involved in the development of periodontitis. Gene ontology analyses showed that these genes are involved in response to molecules of bacterial origin, cell chemotaxis, and response to chemokines. In addition, three genes of them were selected to construct a diagnostic model. And its good diagnostic performance was demonstrated by the receiver operating characteristic curves, with an area under the curve of 0.9424 for the training dataset and 0.9244 for the external validation dataset.


Asunto(s)
Periodontitis Crónica , Adulto , Humanos , Periodontitis Crónica/diagnóstico , Periodontitis Crónica/genética , Periodoncio , Genes Bacterianos , Quimiotaxis , Biología Computacional , Perfilación de la Expresión Génica
11.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240036

RESUMEN

Medication-related osteonecrosis of the jaw (MRONJ) is a severe disease with unclear pathogenesis. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)s) serve as a special source for cell therapy. Herein, we explored whether exosomes (Exo) derived from MSC(AT)s promote primary gingival wound healing and prevent MRONJ. An MRONJ mice model was constructed using zoledronate (Zol) administration and tooth extraction. Exosomes were collected from the conditioned medium (CM) of MSC(AT)s (MSC(AT)s-Exo) and locally administered into the tooth sockets. Interleukin-1 receptor antagonist (IL-1RA)-siRNA was used to knock down the expression of IL-1RA in MSC(AT)s-Exo. Clinical observations, micro-computed tomography (microCT), and histological analysis were used to evaluate the therapeutic effects in vivo. In addition, the effect of exosomes on the biological behavior of human gingival fibroblasts (HGFs) was evaluated in vitro. MSC(AT)s-Exo accelerated primary gingival wound healing and bone regeneration in tooth sockets and prevented MRONJ. Moreover, MSC(AT)s-Exo increased IL-1RA expression and decreased interleukin-1 beta (IL-1ß) and tumor necrosis factor-α (TNF-α) expression in the gingival tissue. The sequent rescue assay showed that the effects of preventing MRONJ in vivo and improving the migration and collagen synthesis abilities of zoledronate-affected HGFs in vitro were partially impaired in the IL-1RA-deficient exosome group. Our results indicated that MSC(AT)s-Exo might prevent the onset of MRONJ via an IL-1RA-mediated anti-inflammatory effect in the gingiva wound and improve the migration and collagen synthesis abilities of HGFs.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Osteonecrosis , Ratones , Animales , Humanos , Ácido Zoledrónico , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Exosomas/metabolismo , Microtomografía por Rayos X , Osteonecrosis/metabolismo , Células Madre Mesenquimatosas/metabolismo , Colágeno/metabolismo
12.
Environ Geochem Health ; 45(11): 8187-8202, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37552412

RESUMEN

We aimed to characterize the association between air pollutants exposure and periodontal diseases outpatient visits and to explore the interactions between ambient air pollutants and meteorological factors. The outpatient visits data of several large stomatological and general hospitals in Hefei during 2015-2020 were collected to explore the relationship between daily air pollutants exposure and periodontal diseases by combining Poisson's generalized linear model (GLMs) and distributed lag nonlinear model (DLNMs). Subgroup analysis was performed to identify the vulnerability of different populations to air pollutants exposure. The interaction between air pollutants and meteorological factors was verified in both multiplicative and additive interaction models. An interquartile range (IQR) increased in nitrogen dioxide (NO2) concentration was associated with the greatest lag-specific relative risk (RR) of gingivitis at lag 3 days (RR = 1.087, 95% CI 1.008-1.173). Fine particulate matter (PM2.5) exposure also increased the risk of periodontitis at the day of exposure (RR = 1.049, 95% CI 1.004-1.096). Elderly patients with gingivitis and periodontitis were both vulnerable to PM2.5 exposure. The interaction analyses showed that exposure to high levels of NO2 at low temperatures was related to an increased risk of gingivitis, while exposure to high levels of NO2 and PM2.5 may also increase the risk of gingivitis and periodontitis in the high-humidity environment, respectively. This study supported that NO2 and PM2.5 exposure increased the risk of gingivitis and periodontitis outpatient visits, respectively. Besides, the adverse effects of air pollutants exposure on periodontal diseases may vary depending on ambient temperature and humidity.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gingivitis , Enfermedades Periodontales , Periodontitis , Humanos , Anciano , Dióxido de Nitrógeno/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Conceptos Meteorológicos , Enfermedades Periodontales/etiología , Enfermedades Periodontales/inducido químicamente , Periodontitis/inducido químicamente , Gingivitis/inducido químicamente , Gingivitis/epidemiología , China , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
13.
Environ Microbiol ; 24(4): 2157-2169, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35229440

RESUMEN

Microplastics have been proposed as emerging threats for terrestrial systems as they may potentially alter the physicochemical/biophysical soil environments. Due to the variety of properties of microplastics and soils, the microplastic-induced effects in soil ecosystems are greatly manifold. Here, we studied effects of three polymer microplastics (polyamide-6, polyethylene, and polyethylene terephthalate) on soil properties with four different soil types. The success patterns, interaction relationships, and assembly processes of soil bacterial communities were also studied. Microplastics have the potential to promote CO2 emissions and enhance the soil humification. Even though microplastics did not significantly alter the diversity and composition of the soil microbial community, the application of microplastics decreased the network complexity and stability, including network size, connectivity, and the number of module and keystone species. The bacterial community assembly was governed by deterministic selection (77.3%-90.9%) in all treatments, while microplastics increased the contribution of stochastic processes from 9.1% in control to 13.6%-22.7%. The neutral model results also indicated most of the bacterial taxa were present in the predicted neutral region (approximately 98%), suggesting the importance of stochastic processes. These findings provided a fundamental insight in understanding the effects of microplastics on soil ecosystems.


Asunto(s)
Microbiota , Microplásticos , Bacterias/genética , Plásticos , Suelo , Microbiología del Suelo
14.
Anal Chem ; 94(39): 13332-13341, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36121740

RESUMEN

Microfluidic paper-based analytical devices (µPADs) are emerging as powerful analytical platforms in clinical diagnostics, food safety, and environmental protection because of their low cost and favorable substrate properties for biosensing. However, the existing top-down fabrication methods of paper-based chips suffer from low resolution (>200 µm). Additionally, papers have limitations in their physical properties (e.g., thickness, transmittance, and mechanical flexibility). Here, we demonstrate a bottom-up approach for the rapid fabrication of heterogeneously controlled paper-based chip arrays. We simply print a wax-patterned microchip with wettability contrasts, enabling automatic and selective assembly of cellulose microfibers to construct predefined paper-based microchip arrays with controllable thickness. This paper-based microchip printing technology is feasible for various substrate materials ranging from inorganic glass to organic polymers, providing a versatile platform for the full range of applications including transparent devices and flexible health monitoring. Our bottom-up printing technology using cellulose microfibers as the starting material provides a lateral resolution down to 42 ± 3 µm and achieves the narrowest channel barrier down to 33 ± 2 µm. As a proof-of-concept demonstration, a flexible paper-based glucose monitor is built for human health care, requiring only 0.3 µL of sample for testing.


Asunto(s)
Celulosa , Técnicas Analíticas Microfluídicas , Celulosa/química , Glucosa , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica , Papel , Humectabilidad
15.
BMC Plant Biol ; 22(1): 489, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36229784

RESUMEN

BACKGROUND: To advance the understanding of adzuki bean (Vigna angularis) resistance to infection with the rust-causing fungus Uromyces vignae (Uv), we comprehensively analyzed histological events and the transcriptome of Uv-infected adzuki bean. RESULTS: Compared with the susceptible cv. Baoqinghong (BQH), the resistant cv. QH1 showed inhibition of uredospore germination and substomatal vesicle development, intense autofluorescence of cells around the infection site, and cell wall deposit formation in response to Uv infection. In cv. QH1, gene set enrichment analysis (GSEA) showed enrichment of chitin catabolic processes and responses to biotic stimuli at 24 h post-inoculation (hpi) and cell wall modification and structural constituent of cytoskeleton at 48 hpi. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated enrichment of WRKY transcription factors (TFs), the calcium binding protein cml, and hydroquinone glucosyltransferase at both 24 and 48 hpi. In total, 1992 and 557 differentially expressed genes (DEGs) were identified at 24 and 48 hpi, respectively. Cell surface pattern-recognition receptors (PRRs), WRKY TFs, defense-associated pathogenesis-related (PR) proteins, and lignin and antimicrobial phenolic compound biosynthesis were significantly induced. Finally, we detected the chitinase (CHI) and phenylalanine ammonia-lyase (PAL) activity were higher in QH1 and increased much earlier than in BQH. CONCLUSION: In cv. QH1, cell-surface PRRs rapidly recognize Uv invasion and activate the corresponding TFs to increase the transcription of defense-related genes and corresponding enzymatic activities to prevent fungal development and spread in host tissues.


Asunto(s)
Quitinasas , Vigna , Basidiomycota , Proteínas de Unión al Calcio , Quitina , Quitinasas/genética , Glucosiltransferasas , Hidroquinonas , Lignina , Fenilanina Amoníaco-Liasa , Factores de Transcripción
16.
Small ; 18(15): e2106643, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35224851

RESUMEN

The design of efficient and sustainable Pt-based catalysts is the key to the development of direct methanol fuel cells. However, most Pt-based catalysts still exhibit disadvantages including unsatisfied catalytic activity and serious CO poisoning in the methanol oxidation reaction (MOR). Herein, highly porous PtAg nanoflowers (NFs) with rich defects are synthesized by using liquid reduction combining chemical etching. It is demonstrated that the proportion of precursors determines the inhomogeneity of alloy elements, and the strong corrosiveness of nitric acid to silver leads to the eventual porous flower-like structure. Impressively, the optimal etched Pt1 Ag2 NFs have the mixed defects of surface steps, dislocations, and bulk holes, and their mass activity (1136 mA mgPt-1 ) is 2.6 times higher than that of commercial Pt/C catalysts, while the ratio of forward and backward peak current density (If /Ib ) can reach 3.2, exhibiting an excellent anti-poisoning ability. Density functional theory calculations further verify their high anti-poison properties from both an adsorption and an oxidation perspective of CO intermediate. The introduction of Ag makes it easier for CO to be oxidized and removed. This study provides a facile approach to prepare rich defects and porous alloy with excellent MOR performance and superior anti-poisoning ability.


Asunto(s)
Aleaciones , Metanol , Aleaciones/química , Catálisis , Metanol/química , Porosidad , Plata
17.
Small ; 18(48): e2204720, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36269882

RESUMEN

Enhancing the catalytic activity of Pt-based alloy by a rational structural design is the key to addressing the sluggish kinetics of direct alcohol fuel cells. Herein, a facile one-pot method is reported to synthesize PtCuRu nanoflowers (NFs). The synergetic effect among Pt, Cu, and Ru can lower the d-band center of Pt, regulate the morphology, generate Ru-rich edge, and allow the exposure of more high index facets. The optimized Pt0.68 Cu0.18 Ru0.14 NFs exhibit outstanding electrocatalytic performances and excellent anti-poisoning abilities. The specific activities for the methanol oxidation reaction (MOR) (7.65 mA cm-2 ) and ethanol oxidation reaction (EOR) (7.90 mA cm-2 ) are 6.0 and 7.1 times higher than commercial Pt/C, respectively. The CO stripping experiment and the chronoamperometric (5000 s) demonstrate the superior anti-poisoning property and durability performance. Density functional theory calculations confirm that high metallization degree leads to the decrease of d-band center, the promotion of oxidation of CO, and improvement of the inherent activity and anti-poisoning ability. A Ru-rich edge exposes abundant high index facets to accelerate the reaction kinetics of rate-determining steps by decreasing the energy barrier for forming *HCOOH (MOR) and CC bond breaking (EOR).


Asunto(s)
Aleaciones , Etanol , Cinética
18.
J Med Virol ; 94(8): 3820-3828, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35437759

RESUMEN

Coxsackievirus A10 (CV-A10) is a major pathogen that causes hand, foot, and mouth disease. There are no effective therapeutic drugs for CV-A10 infection; therefore, CV-A10 vaccines should be developed. Previously, we isolated a CV-A10 strain (N25) that can be cultured on Vero cells. In this study, the N25 strain was plaque-purified three times from Vero cells, and three clones were selected for adaptive culture. The three clones of the 5th, 12th, and 19th generations were compared and analyzed in terms of viral titers, plaque morphology, pathogenicity in suckling mice, and nucleotide and amino acid sequences of the complete genome. The infectivity titers of the three clones (P2-P22) were maintained at 6.5-7.0 lgCCID50 /ml. The three clones began to proliferate at 6 h and peaked at 36 h; the corresponding CCID50 was in the range of 106.5 -106.875 /ml, which gradually decreased. The suckling mice in the challenged group exhibited clinical symptoms such as paralysis of the limbs, which gradually worsened until death. The inactivated vaccines prepared using the three clones efficiently induced antigen-specific serum antibodies in mice. There were eight nucleotide mutations in the three clones, which resulted in two and four amino acid substitutions in the VP3 and VP1 coding regions, respectively. The nucleotide and amino acid sequence homology between the three clones and N25 were 99.92%-100% and 99.78%-100%, respectively, indicating high genetic stability. Our findings provide a theoretical basis for screening CV-A10 vaccine candidate clones.


Asunto(s)
Enterovirus Humano A , Enfermedad de Boca, Mano y Pie , Animales , Bencenoacetamidas , Chlorocebus aethiops , Células Clonales , Enterovirus Humano A/genética , Genotipo , Humanos , Ratones , Nucleótidos , Piperidonas , Células Vero
19.
Langmuir ; 38(15): 4774-4784, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35380846

RESUMEN

Water-soluble amphiphilic polymers are vital chemicals in the oil and gas industry to retard crystal growth of hydrocarbon hydrate via surface adsorption and suppress nucleation of a pristine hydrate nucleus, thereby preventing formation of hydrate blockages in flow lines during oil and natural gas production. Apart from a few theoretical modeling studies, an experimental method to study the polymer/water interface in the crystal growth is critically needed. Here, water motions in the hydration shells of an exemplary kinetic inhibitor, poly(N-vinylcaprolactam), during hydrate formation from the tetrahydrofuran/water system are revealed via nuclear magnetic resonance relaxometry. Unequivocal experiments show that the pivotal interfacial water in the tightly bound state gradually freezes at rates depending on the polymer molecular weight (MW). This is supported by nonfreezable water analysis, which is correlated to the inhibition time. The polymers tune the kinetics of the hydration process via interaction with and perturbation of the water molecules. The free water component in the polymer solution crystallizes at a very slow rate when in partially restricted mobility, whereas the bound water component increases in the reaction, with the polymer/water interface serving as the reaction sites. The appropriate MW (including average MW and polydispersity values) of the inhibitive polymers can give rise to maximal retardation of the hydrate crystal growth. This work will help control other multiphase crystallization kinetic processes through the design of inhibitors or promoters functioning in the interface.


Asunto(s)
Polímeros , Agua , Caprolactama/análogos & derivados , Cinética , Espectroscopía de Resonancia Magnética , Agua/química
20.
Environ Sci Technol ; 56(22): 15746-15759, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36301071

RESUMEN

Biodegradable polymers are promoted as promising alternatives for conventional non-degradable plastics, but they may also negatively impact soil ecosystems. Here, we estimated the effects of biodegradable (polylactide (PLA) and polybutylene succinate (PBS)) and non-biodegradable (polyethylene (PE) and polystyrene (PS)) microplastics at a concentration of 1% (w/w) on dissolved organic matter (DOM) in two soil types, a black soil (BS) and a yellow soil (YS), by using fluorescence excitation-emission matrix spectroscopy and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). PBS significantly increased the contents of soil dissolved organic carbon (DOC) and the relative intensities of protein-like components. The turnover rates of soil DOM were statistically higher in PBS treatments (0.106 and 0.196, p < 0.001) than those in other microplastic groups. The FT-ICR-MS results indicated that more labile-active DOM molecules were preferentially obtained in biodegradable microplastic treatments, which may be attributed to the polymer degradation. The conventional microplastics showed no significant effects on the optical characteristics but changed the molecular compositions of the soil DOM. More labile DOM molecules were observed in BS samples treated with PE compared to the control, while the conventional microplastics decreased the DOM lability in YS soil. The distinct priming effects of plastic-leached DOM may trigger the DOM changes in different soils. This study provided important information for further understanding the impact of microplastics on soil carbon processes.


Asunto(s)
Microplásticos , Suelo , Suelo/química , Plásticos , Materia Orgánica Disuelta , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA