Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Small ; 11(36): 4704-22, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26140363

RESUMEN

Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer.


Asunto(s)
Neoplasias del Colon/metabolismo , Neoplasias del Colon/terapia , Curcumina/química , Ácido Láctico/química , Nanocápsulas/química , Polietilenglicoles/química , Ácido Poliglicólico/química , Animales , Antineoplásicos/administración & dosificación , Apoptosis , Línea Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Femenino , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Imagen Multimodal , Nanomedicina/métodos , Nanopartículas/química , Trasplante de Neoplasias , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
2.
Biomaterials ; 299: 122158, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37243988

RESUMEN

Therapeutic nucleic acids (TNAs) comprise an alternative to conventional drugs for cancer therapy. Recently, stable nucleic acid lipid particles (SNALPs) have been explored to deliver TNA efficiently and safely both in vitro and in vivo. Small interfering RNA (siRNA) and messenger RNA (mRNA) based drugs have been suggested for a wide range of pathologies, and their respective lipid nanoparticle (LNP) formulations have been optimised using a Design of Experiments (DoE) approach. However, it is uncertain as to whether data obtained from DoE using simple experimental outputs can be used to generate a general heuristic for delivery of diverse TNA both in vitro and in vivo. Using plasmid DNA (pDNA), for which limited DoE optimisation has been performed, and siRNA to represent the two extremities of the TNA spectrum in terms of size and biological requirements, we performed a comparative DoE for both molecules and assessed the predictive qualities of the model both in vitro and in vivo. By producing a minimum run of 24 SNALP formulations with different lipid compositions incorporating either pDNA or siRNA, DoE models were successfully established for predicting the effect of individual lipid composition on particle size, TNA encapsulation and transfection both in vitro and in vivo. The results showed that the particle size, and in vitro and in vivo transfection efficiency of both pDNA and siRNA SNALP formulations were affected by lipid compositions. The encapsulation efficiency of pDNA SNALPs but not siRNA SNALPs was affected by the lipid composition. Notably, the optimal lipid compositions of SNALPs for pDNA/siRNA delivery were not identical. Furthermore, in vitro transfection efficiency could not be used to predict promising LNP candidates in vivo. The DoE approach described in this study may provide a method for comprehensive optimisation of LNPs for various applications. The model and optimal formulation described in this study can serve as a foundation from which to develop other novel NA containing LNPs for multiple applications such as NA based vaccines, cancer immunotherapies and other TNA therapies.


Asunto(s)
Nanopartículas , Liposomas , ADN , ARN Interferente Pequeño , ARN Mensajero , Lípidos
3.
J Control Release ; 359: 257-267, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37290723

RESUMEN

The clinical application of EDV, a potent antioxidant drug approved for amyotrophic lateral sclerosis (ALS), is limited by its short biological half-life and poor water solubility necessitating hospitalization during intravenous infusion. Nanotechnology-based drug delivery constitutes a powerful tool through inferring drug stability and targeted drug delivery improving drug bioavailability at the diseased site. Nose-to-brain drug delivery offers direct access to the brain bypassing the blood brain barrier and reducing systemic biodistribution. In this study, we designed EDV-loaded poly(lactic-co-glycolic acid) (PLGA)-based polymeric nanoparticles (NP-EDV) for intranasal administration. NPs were formulated by the nanoprecipitation method. Morphology, EDV loading, physicochemical properties, shelf-life stability, in vitro release and pharmacokinetic assessment in mice were conducted. EDV was efficiently loaded into ∼90 nm NPs, stable up to 30 days of storage, at ∼3% drug loading. NP-EDV reduced H2O2-induced oxidative stress toxicity in mouse microglial cell line BV-2. Optical imaging and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) showed that intranasal delivery of NP-EDV offered higher and more sustained brain uptake of EDV compared to intravenous administration. This study is the first of its kind to develop an ALS drug in a nanoparticulate formulation for nose-to-brain delivery raising hope to ALS patients where currently treatment options are limited to two clinically approved drugs only.


Asunto(s)
Esclerosis Amiotrófica Lateral , Nanopartículas , Ratones , Animales , Administración Intranasal , Edaravona/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/metabolismo , Portadores de Fármacos/química , Disponibilidad Biológica , Distribución Tisular , Cromatografía Liquida , Peróxido de Hidrógeno/metabolismo , Espectrometría de Masas en Tándem , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula
4.
Adv Healthc Mater ; 10(7): e2001853, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33661553

RESUMEN

This study investigated the feasibility of lipid polymer hybrid nanoparticles (LPH) as a platform for the combinatorial delivery of small interfering RNA (siRNA) and etoposide (Eto). Different Eto loaded LPH formulations (LPH Eto ) are prepared. The optimized cationic LPH Eto  with a particle size of 109.66 ± 5.17 nm and Eto entrapment efficiency (EE %) of 80.33 ± 2.55 is used to incorporate siRNA targeting CD47 (siCD47), a do not eat me marker on the surface of cancer cells. The siRNA-encapsulating LPH (LPH siNEG-Eto ) has a particle size of 115.9 ± 4.11 nm and siRNA EE % of 63.54 ± 4.36 %. LPHs improved the cellular uptake of siRNA in a dose- and concentration-dependent manner. Enhanced cytotoxicity (3.8-fold higher than Eto solution) and high siRNA transfection efficiency (≈50 %) are obtained. An in vivo biodistribution study  showed a preferential uptake of the nanosystem into lung, liver, and spleen. In an experimental pseudo-metastatic B16F10 lung tumor model, a superior therapeutic outcome can be observed in mice treated with combinatory therapy. Immunological studies revealed elevated CD4+, CD8+ cells, and macrophages in the lung following combinatory treatment. The study suggests the potential of the current system for combinatory chemotherapy and immunotherapy for the treatment of lung cancer or lung metastasis.


Asunto(s)
Neoplasias Pulmonares , Melanoma Experimental , Nanopartículas , Animales , Línea Celular Tumoral , Etopósido/farmacología , Lípidos , Pulmón , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Polímeros , ARN Interferente Pequeño , Distribución Tisular
5.
Biomater Sci ; 9(3): 795-806, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33206082

RESUMEN

Poly(lactic-co-glycolic acid) (PLGA) is the most commonly described biocompatible copolymer used in biomedical applications. In this work, a green synthetic approach based on the biocompatible zinc proline complex, as an initiator for PLGA synthesis, is reported for the first time for the synthesis of methoxy-poly(ethylene glycol)-block-poly(l-lactic-co-glycolic acid) (mPEG-PLGA). mPEG-PLGA with controlled molecular weight and narrow polydispersity was synthesised. Its potential for delivery of irinotecan (Ir), a poorly water-soluble chemotherapeutic drug used for the treatment of colon and pancreatic cancer, was studied. Nanoparticles of controlled size (140-160 nm), surface charge (∼-10 mV), release properties and cytotoxicity against CT-26 (colon) and BxPC-3 (pancreatic) cancer cells, were prepared. Tumor accumulation was confirmed by optical imaging of fluorescently labelled nanoparticles. Unlike Tween® 80 coated NP-Ir, the Pluronic® F-127 coated NP-Ir exhibits significant tumor growth delay compared to untreated and blank formulation treated groups in the CT-26 subcutaneous tumor model, after 4 treatments of 30 mg irinotecan per kg dose. Overall, this proof-of-concept study demonstrates that the newly synthesized copolymer, via a green route, is proven to be nontoxic, requires fewer purification steps and has potential applications in drug delivery.


Asunto(s)
Neoplasias del Colon , Nanopartículas , Preparaciones Farmacéuticas , Neoplasias del Colon/tratamiento farmacológico , Dioxanos , Portadores de Fármacos , Humanos , Irinotecán , Tamaño de la Partícula , Polietilenglicoles , Prolina , Zinc
6.
ACS Appl Mater Interfaces ; 13(34): 40392-40400, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34405988

RESUMEN

Black porous silicon nanoparticles (BPSi NPs) are known as highly efficient infrared light absorbers that are well-suitable for photothermal therapy (PTT) and photoacoustic imaging (PAI). PTT and PAI require a sufficient number of effectively light-absorbing NPs to be accumulated in tumor after intravenous administration. Herein, biodistribution of PEGylated BPSi NPs with different sizes (i.e., 140, 200, and 300 nm in diameter) is investigated after intravenous administration in mice. BPSi NPs were conjugated with fluorescent dyes Cy5.5 and Cy7.5 to track them in vitro and in vivo, respectively. Optical imaging with an in vivo imaging system (IVIS) was found to be an inadequate technique to assess the biodistribution of the dye-labeled BPSi NPs in vivo because the intrinsic strong absorbance of the BPSi NPs interfered fluorescence detection. This challenge was resolved via the use of inductively coupled plasma optical emission spectrometry to analyze ex vivo the silicon content in different tissues and tumors. The results indicated that most of the polyethylene glycol-coated BPSi NPs were found to accumulate in the liver and spleen after intravenous injection. The smallest 140 nm particles accumulated the most in tumors at an amount of 9.5 ± 3.4% of the injected dose (concentration of 0.18 ± 0.08 mg/mL), the amount known to produce sufficient heat for cancer PTT. Furthermore, the findings from the present study also suggest that techniques other than optical imaging should be considered to study the organ biodistribution of NPs with strong light absorbance properties.


Asunto(s)
Nanopartículas/química , Silicio/farmacocinética , Animales , Carbocianinas/química , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/química , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Neoplasias/metabolismo , Imagen Óptica , Tamaño de la Partícula , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Porosidad , Células RAW 264.7 , Silicio/química , Bazo/metabolismo , Distribución Tisular
7.
Mater Sci Eng C Mater Biol Appl ; 109: 110620, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228915

RESUMEN

Asenapine maleate (ASPM) is an antipsychotic drug prescribed for the treatment of schizophrenia and bipolar disorder. ASPM possesses low oral bioavailability due to extensive hepatic metabolism. Therefore, RGD peptide conjugated liposomes loaded with ASPM were prepared to target Peyer's patches in the intestine which in-turn get access into intestinal lymphatic system thereby increasing the oral bioavailability of the drug. Liposomes were evaluated for size, zeta potential, differential scanning calorimetry (DSC), FTIR spectroscopy, X-ray diffraction (XRD), shape and morphology, in vitro drug release, cell line studies, everted intestinal uptake, pharmacodynamics, pharmacokinetics, tissue distribution, targetability and stability studies. In vitro drug release study showed the sustained release of drug from the formulations. Optimized liposomes (size <110 nm) showed greater permeability across the Caco2 + Raji B co-culture model in vitro and everted rat ileum ex vivo. Liposomes showed increase in bioavailability and high efficacy in reducing the L-DOPA-carbidopa induced locomotor count compared to plain drug. Liposomes also showed high concentration of drug in the brain after their oral administration. Imaging studies showed that RGD peptide conjugated liposomes were successful in targeting the Peyer's patches, both in vivo and ex vivo. The study successfully demonstrated the improved pharmacokinetics and efficacy profile of ASPM by using a ligand conjugated targeted liposomal system.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos , Nanoestructuras , Ganglios Linfáticos Agregados/metabolismo , Animales , Células CACO-2 , Dibenzocicloheptenos , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Liposomas , Masculino , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie
8.
Int J Pharm ; 584: 119392, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32376448

RESUMEN

In this study, enteric coatings based exclusively on naturally occurring ingredients were reported. Alginate (Alg) and pectin (Pec) blends with or without naturally occurring glyceride, glycerol monostearate (GMS), were initially used to produce solvent-casted films. Incorporating GMS in the natural polymeric films significantly enhanced the acid-resistance properties in gastric medium. Theophylline tablets coated with Alg-Pec blends without GMS disintegrated shortly after incubation in gastric medium (pH 1.2), leading to a premature and complete release of theophylline. Interestingly, tablets coated with Alg-Pec blends that contain the natural glyceride (GMS) resisted the gastric environment for 2 h with minimal drug release (<5%) and disintegrated rapidly following introduction to the intestinal medium, allowing a fast and complete drug release. Furthermore, the coating system proved to be stable for six months under accelerated conditions. These findings are particularly appealing to nutraceutical industry as they provide the foundation to produce naturally-occurring GRAS based enteric coatings.


Asunto(s)
Alginatos/química , Química Farmacéutica/métodos , Suplementos Dietéticos , Pectinas/química , Comprimidos Recubiertos/química , Teofilina/administración & dosificación , Rastreo Diferencial de Calorimetría , Liberación de Fármacos , Ácido Gástrico , Glicéridos/química , Glicerol/química , Concentración de Iones de Hidrógeno , Ácidos Polimetacrílicos , Solubilidad , Teofilina/química
9.
Biomater Sci ; 8(9): 2590-2599, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32238997

RESUMEN

In this work we describe the formulation and characterisation of red-emitting polymeric nanocapsules (NCs) incorporating superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic tumour targeting. The self-fluorescent oligomers were synthesised and chemically conjugated to PLGA which was confirmed by NMR spectroscopy, FT-IR spectroscopy and mass spectrometry. Hydrophobic SPIONs were synthesised through thermal decomposition and their magnetic and heating properties were assessed by SQUID magnetometry and calorimetric measurements, respectively. Magnetic nanocapsules (m-NCs) were prepared by a single emulsification/solvent evaporation method. Their in vitro cytotoxicity was examined in CT26 colon cancer cells. The formulated fluorescent m-NCs showed good stability and biocompatibility both in vitro and in vivo in CT 26 colon cancer models. Following intravenous injection, accumulation of m-NCs in tumours was observed by optical imaging. A higher iron content in the tumours exposed to a magnetic field, compared to the contralateral tumours without magnetic exposure in the same animal, further confirmed the magnetic tumour targeting in vivo. The overall results show that the engineered red-emitting m-NCs have great potential as multifunctional nanocarriers for multi-model bioimaging and magnetic-targeted drug delivery.


Asunto(s)
Compuestos Férricos/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Nanocápsulas/administración & dosificación , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Compuestos Férricos/farmacocinética , Colorantes Fluorescentes/farmacocinética , Hipertermia Inducida , Hierro/metabolismo , Fenómenos Magnéticos , Ratones Endogámicos BALB C , Neoplasias/metabolismo , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética , Poliglactina 910/administración & dosificación , Poliglactina 910/farmacocinética , Distribución Tisular
10.
Adv Drug Deliv Rev ; 114: 143-160, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28694026

RESUMEN

Nitrogen containing bisphosphonates (N-BPs) including zoledronate (ZOL) and alendronate (ALD) inhibit farnesyl diphosphate synthase, and have been shown to have a cytotoxic affect against cancer cells as a monotherapy and to also sensitise tumour cells to destruction by γδ T cells. γδ T cells are a subset of human T lymphocytes and have a diverse range of roles in the immune system including the recognition and destruction of cancer cells. This property of γδ T cells can be harnessed for use in cancer immunotherapy through in vivo expansion or the adoptive transfer of ex vivo activated γδ T cells. The use of N-BPs with γδ T cells has been shown to have a synergistic effect in in vitro, animal and clinical studies. N-BPs have limited in vivo activity due to rapid clearance from the circulation. By encapsulating N-BPs in liposomes (L) it is possible to increase the levels of N-BPs at non-osseous tumour sites. L-ZOL and L-ALD have been shown to have different toxicological profiles than free ZOL or ALD. Both L-ALD and L-ZOL led to increased spleen weight, leucocytosis, neutrophilia and lymphocytopenia in mice after intravenous injection. L-ALD was shown to be better tolerated than L-ZOL in murine studies. Biodistribution studies have been performed in order to better understand the interaction of N-BPs and γδ T cells in vivo. Additionally, in vivo therapy studies have shown that mice treated with both L-ALD and γδ T cells had a significant reduction in tumour growth compared to mice treated with L-ALD or γδ T cells alone. The use of ligand-targeted liposomes may further increase the efficacy of this combinatory immunotherapy. Liposomes targeting the αvß6 integrin receptor using the peptide A20FMDV2 had a greater ability than untargeted liposomes in sensitising cancer cells to destruction by γδ T cells in αvß6 positive cancer cell lines.


Asunto(s)
Difosfonatos/administración & dosificación , Difosfonatos/uso terapéutico , Portadores de Fármacos/química , Inmunoterapia , Nanomedicina , Nitrógeno , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T/efectos de los fármacos , Animales , Difosfonatos/química , Difosfonatos/farmacología , Portadores de Fármacos/administración & dosificación , Humanos , Liposomas , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
11.
Eur J Pharm Sci ; 101: 228-242, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28163163

RESUMEN

Many chemotherapeutics suffer from poor aqueous solubility and tissue selectivity. Distearoylphosphatidylethanolamine-poly(ethylene glycol) (DSPE-PEG) micelles are a promising formulation strategy for the delivery of hydrophobic anticancer drugs. However, storage and in vivo instability restrict their use. The aim of this study was to prepare mixed micelles, containing a novel polymer, lipoic acid-chitosan-poly(ethylene glycol) (LACPEG), and DSPE-PEG, to overcome these limitations and potentially increase cancer cell internalisation. Drug-loaded micelles were prepared with a model tyrosine kinase inhibitor and characterized for size, surface charge, stability, morphology, drug entrapment efficiency, cell viability (A549 and PC-9 cell lines), in vivo biodistribution, ex vivo tumor accumulation and cellular internalisation. Micelles of size 30-130nm with entrapment efficiencies of 46-81% were prepared. LACPEG/DSPE-PEG mixed micelles showed greater interaction with the drug (condensing to half their size following entrapment), greater stability, and a safer profile in vitro compared to DSPE-PEG micelles. LACPEG/DSPE-PEG and DSPE-PEG micelles had similar entrapment efficiencies and in vivo tumor accumulation levels, but LACPEG/DSPE-PEG micelles showed higher tumor cell internalisation. Collectively, these findings suggest that LACPEG/DSPE-PEG mixed micelles provide a promising platform for tumor delivery of hydrophobic drugs.


Asunto(s)
Antineoplásicos/química , Quitosano/química , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Polímeros/química , Células A549 , Animales , Antineoplásicos/metabolismo , Línea Celular Tumoral , Química Farmacéutica/métodos , Portadores de Fármacos/química , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Micelas , Tamaño de la Partícula , Solubilidad , Distribución Tisular/efectos de los fármacos
12.
J Control Release ; 244(Pt B): 240-246, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27449744

RESUMEN

Magnetic drug targeting has been proposed as means of concentrating therapeutic agents at a target site and the success of this approach has been demonstrated in a number of studies. However, the behavior of magnetic carriers in blood vessels and tumor microcirculation still remains unclear. In this work, we utilized polymeric magnetic nanocapsules (m-NCs) for magnetic targeting in tumors and dynamically visualized them within blood vessels and tumor tissues before, during and after magnetic field exposure using fibered confocal fluorescence microscopy (FCFM). Our results suggested that the distribution of m-NCs within tumor vasculature changed dramatically, but in a reversible way, upon application and removal of a magnetic field. The m-NCs were concentrated and stayed as clusters near a blood vessel wall when tumors were exposed to a magnetic field but without rupturing the blood vessel. The obtained FCFM images provided in vivo in situ microvascular observations of m-NCs upon magnetic targeting with high spatial resolution but minimally invasive surgical procedures. This proof-of-concept descriptive study in mice is envisaged to track and quantify nanoparticles in vivo in a non-invasive manner at microscopic resolution.


Asunto(s)
Sistemas de Liberación de Medicamentos , Fenómenos Magnéticos , Nanocápsulas/administración & dosificación , Animales , Línea Celular Tumoral , Femenino , Ratones Endogámicos BALB C , Microscopía Confocal , Nanocápsulas/química , Nanocápsulas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Polímeros/administración & dosificación , Polímeros/química , Polímeros/uso terapéutico , Carga Tumoral/efectos de los fármacos
13.
ACS Appl Mater Interfaces ; 7(34): 18920-3, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26278410

RESUMEN

Polyethylene glycol-functionalized nanographene oxide (PEGylated n-GO) was synthesized from alkyne-modified n-GO, using solvent-free click-mechanochemistry, i.e., copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The modified n-GO was subsequently conjugated to a mucin 1 receptor immunoglobulin G antibody (anti-MUC1 IgG) via thiol-ene coupling reaction. n-GO derivatives were characterized with Fourier-transformed infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), Bradford assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and atomic force microscopy (AFM). Cell targeting was confirmed in vitro in MDA-MB-231 cells, either expressing or lacking MUC1 receptors, using flow cytometry, confocal laser scanning microscopy (CLSM) and multiphoton (MP) fluorescence microscopy. Biocompatibility was assessed using the modified lactate dehydrongenase (mLDH) assay.


Asunto(s)
Química Clic/métodos , Sistemas de Liberación de Medicamentos , Grafito/química , Neoplasias/patología , Óxidos/química , Línea Celular Tumoral , Endocitosis , Humanos , Microscopía Confocal , Mucina-1/metabolismo , Nanopartículas/química , Polietilenglicoles/química , Solventes , Espectroscopía Infrarroja por Transformada de Fourier
14.
ACS Nano ; 8(2): 1384-401, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24397686

RESUMEN

In this work we describe the formulation and characterization of chemically modified polymeric nanocapsules incorporating the anticancer drug, quercetin, for the passive and active targeting to tumors. Folic acid was conjugated to poly(lactide-co-glycolide) (PLGA) polymer to facilitate active targeting to cancer cells. Two different methods for the conjugation of PLGA to folic acid were employed utilizing polyethylene glycol (PEG) as a spacer. Characterization of the conjugates was performed using FTIR and (1)H NMR studies. The PEG and folic acid content was independent of the conjugation methodology employed. PEGylation has shown to reduce the size of the nanocapsule; moreover, zeta-potential was shown to be polymer-type dependent. Comparative studies on the cytotoxicity and cellular uptake of the different formulations by HeLa cells, in the presence and absence of excess folic acid, were carried out using MTT assay and Confocal Laser Scanning Microscopy, respectively. Both results confirmed the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the folate enriched cancer cells in a folate-dependent manner. Finally, the passive tumor accumulation and the active targeting of the nanocapsules to folate-expressing cells were confirmed upon intravenous administration in HeLa or IGROV-1 tumor-bearing mice. The developed nanocapsules provide a system for targeted delivery of a range of hydrophobic anticancer drugs in vivo.


Asunto(s)
Ácido Fólico/metabolismo , Nanocápsulas , Neoplasias/metabolismo , Polietilenglicoles/química , Polímeros/química , Quercetina/administración & dosificación , Animales , Línea Celular Tumoral , Humanos , Técnicas In Vitro , Ratones , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Electrónica de Transmisión/métodos , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA