Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Total Environ ; 807(Pt 3): 151075, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34687702

RESUMEN

Polymer materials have been widely used in the remediation of soil heavy metal contamination for their good performance in the absorption of metal ions. To reveal the effect of polymer amendment (PA) on the remediation of cadmium-contaminated cotton fields, the cadmium (Cd) fractions in soil, Cd concentration in cotton organs, bioconcentration factor (BCF) of Cd, translocation factor (TF) of Cd, and the antioxidant capacity and photosynthesis of functional leaves were evaluated combining with the transcriptomic and metabolomic analyses, in barrel experiments in the field at the flowering and boll-forming stage of cotton. The results showed that, cotton improved the tolerance to Cd through self-regulation in Cd-contaminated soil. The expression of oxoglutaric acid and jasmonic acid were down-regulated by the application of PA to improve the photosynthetic rate (7.71%-46.20%), chlorophyll content (17.59%-63.18%), chlorophyll fluorescence (7.66%-32.25%), and antioxidant enzyme activity (15.49%-45.50%) of functional leaves, and the down-regulation of the expression of jasmonic acid and up-regulation of the expression of stearic acid reduced the exchangeable Cd concentration in the soil, which reduced the transport of Cd from the root to the bolls (54.39%). Thereby, the balance of the genetic adaptation and phenotypic plasticity of cotton was achieved, and the cell structure of leaves was restored. This study deepens our understanding of the molecular mechanism of PA in the remediation of Cd contamination in cotton fields, and provides guidance for the remediation of heavy metal contamination in farmland soil and agricultural safety under drip irrigation.


Asunto(s)
Cadmio , Polímeros , Adaptación Fisiológica
2.
J Hazard Mater ; 416: 126094, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492903

RESUMEN

Cadmium (Cd) contamination seriously threatens the agricultural production, so exploring the response of soil microenvironment to amendments in Cd-contaminated soils is of importance. In this study, the mechanism of remediation of Cd-contaminated soil using the polymer amendment was studied in cotton flowering stage. The results showed that the concentration of Cd in cotton root and various Cd forms in Cd-contaminated soils were obviously high. High concentration of Cd, especially exchangeable Cd, could seriously affect the soil microenvironment. The root growth of cotton could be promoted, the carbon and nitrogen concentration and storage in soil were increased by 21.72-50.00%, while the exchangeable Cd concentration in soil were decreased by 41.43%, after applying the polymer amendment. In addition, the polymer amendment affected the soil microbial niche, increased the relative abundance of soil bacteria (Flaviaesturariibacter, Rubellimicrobium, and Cnuella), fungi (Verticillium and Tricharina), actinomycetes (Blastococcus and Nocardioides), and fungivores nematodes (Aphelenchus), and improved soil microbial metabolic functions (metabolism of nucleotides and carbohydrates). Therefore, this polymer amendment could be used to remediate severe Cd-contaminated soils, and the changes in the microbial and nematode communities help us understand the detoxification mechanism of the polymer amendment in Cd-contaminated soils.


Asunto(s)
Contaminantes del Suelo , Suelo , Cadmio/análisis , Cadmio/toxicidad , Polímeros , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA