Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 93(2): 244-256, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36088542

RESUMEN

OBJECTIVE: Despite the increasing number of genes associated with Charcot-Marie-Tooth (CMT) disease, many patients currently still lack appropriate genetic diagnosis for this disease. Autosomal dominant mutations in aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT. Here, we describe causal missense mutations in the gene encoding seryl-tRNA synthetase 1 (SerRS) for 3 families affected with CMT. METHODS: Whole-exome sequencing was performed in 16 patients and 14 unaffected members of 3 unrelated families. The functional impact of the genetic variants identified was investigated using bioinformatic prediction tools and confirmed using cellular and biochemical assays. RESULTS: Combined linkage analysis for the 3 families revealed significant linkage (Zmax LOD = 6.9) between the genomic co-ordinates on chromosome 1: 108681600-110300504. Within the linkage region, heterozygous SerRS missense variants segregated with the clinical phenotype in the 3 families. The mutant SerRS proteins exhibited reduced aminoacylation activity and abnormal SerRS dimerization, which suggests the impairment of total protein synthesis and induction of eIF2α phosphorylation. INTERPRETATION: Our findings suggest the heterozygous SerRS variants identified represent a novel cause for autosomal dominant CMT. Mutant SerRS proteins are known to impact various molecular and cellular functions. Our findings provide significant advances on the current understanding of the molecular mechanisms associated with ARS-related CMT. ANN NEUROL 2023;93:244-256.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Serina-ARNt Ligasa , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Serina-ARNt Ligasa/genética , Mutación , Heterocigoto , Mutación Missense/genética
2.
Mol Pharm ; 21(4): 1729-1744, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38449426

RESUMEN

Thermal ablation has been commonly used as an effective treatment for hepatocellular carcinoma; however, peri-necrotic tumor residues after ablation play a significant role in tumor recurrence and poor prognosis. Therefore, developing agents that can effectively target and eliminate residual tumors is critically needed. Necrosis targeting strategies have potential implications for evaluating tumor necrosis areas and treating the surrounding residual tumors. To address this issue, we have developed a biodegradable nanoparticle with necrosis avidity that is compatible with fluorescence imaging, single photon emission computed tomography (SPECT) imaging, and necrosis targeted radiotherapy. The nanoparticles were synthesized using iodine-131-labeled hypericin (131I-Hyp) as the core and amphiphilic copolymer poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) as the shell. The developed nanoparticle, PNP@(131I-Hyp), has a uniform spherical morphology with a size of 33.07 ± 3.94 and 45.93 ± 0.58 nm determined by cryogenic transmission electron microscopy (cryo-TEM) and dynamic light-scattering analysis (polydispersity index = 0.19 ± 0.01), respectively, and having a good stability and blood compatibility in vitro. In mouse subcutaneous ablated-residual tumor models, fluorescence and SPECT imaging demonstrated that PNP@(131I-Hyp) prominently accumulated in the tumor and was retained for as long as 168 h following intravenous injection. Moreover, ex vivo analyses showed that PNP@(131I-Hyp) mainly gathered in the necrotic zones of subcutaneous tumors and inhibited residual tumors by radiotherapy. In addition, histological examination of harvested organs and hematological analysis demonstrated that intravenous injection of 5 mCi/kg nanoparticles caused no gross abnormalities. This multifunctional nanoparticle, therefore, has necrosis imaging and targeted therapeutic effects on residual tumors after thermal ablation of hepatocellular carcinoma, showing potential for clinical application.


Asunto(s)
Carcinoma Hepatocelular , Lactonas , Neoplasias Hepáticas , Nanopartículas , Pindolol/análogos & derivados , Ratones , Animales , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/radioterapia , Neoplasia Residual , Medicina de Precisión , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Recurrencia Local de Neoplasia , Necrosis , Polietilenglicoles/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Nanopartículas/química , Imagen Óptica
3.
Mol Pharm ; 21(4): 1625-1638, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38403951

RESUMEN

Cationic lipids play a pivotal role in developing novel drug delivery systems for diverse biomedical applications, owing to the success of mRNA vaccines against COVID-19 and the Phase III antitumor agent EndoTAG-1. However, the therapeutic potential of these positively charged liposomes is limited by dose-dependent toxicity. While an increased content of cationic lipids in the formulation can enhance the uptake and cytotoxicity toward tumor-associated cells, it is crucial to balance these advantages with the associated toxic side effects. In this work, we synthesized the cationic lipid HC-Y-2 and incorporated it into sialic acid (SA)-modified cationic liposomes loaded with paclitaxel to target tumor-associated immune cells efficiently. The SA-modified cationic liposomes exhibited enhanced binding affinity toward both RAW264.7 cells and 4T1 tumor cells in vitro due to the increased ratios of cationic HC-Y-2 content while effectively inhibiting 4T1 cell lung metastasis in vivo. By leveraging electrostatic forces and ligand-receptor interactions, the SA-modified cationic liposomes specifically target malignant tumor-associated immune cells such as tumor-associated macrophages (TAMs), reduce the proportion of cationic lipids in the formulation, and achieve dual objectives: high cellular uptake and potent antitumor efficacy. These findings highlight the potential advantages of this innovative approach utilizing cationic liposomes.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Humanos , Femenino , Liposomas/química , Ácido N-Acetilneuramínico/química , Neoplasias de la Mama/tratamiento farmacológico , Vacunas contra la COVID-19 , Paclitaxel/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Lípidos , Cationes , Línea Celular Tumoral
4.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474556

RESUMEN

Chemotherapy is a well-established method for treating cancer, but it has limited effectiveness due to its high dosage and harmful side effects. To address this issue, researchers have explored the use of photothermal agent nanoparticles as carriers for precise drug release in vivo. In this study, three different sizes of polydopamine nanoparticles (PDA-1, PDA-2, and PDA-3) were synthesized and evaluated. PDA-2 was selected for its optimal size, encapsulation rate, and drug loading rate. The release of the drug from PDA-2@TAX was tested at different pH and NIR laser irradiation levels. The results showed that PDA-2@TAX released more readily in an acidic environment and exhibited a high photothermal conversion efficiency when exposed to an 808 nm laser. In vitro experiments on ovarian cancer cells demonstrated that PDA-2@TAX effectively inhibited cell proliferation, highlighting its potential for synergistic chemotherapy-photothermal treatment.


Asunto(s)
Hipertermia Inducida , Indoles , Nanopartículas , Neoplasias Ováricas , Polímeros , Quercetina/análogos & derivados , Humanos , Femenino , Fototerapia/métodos , Hipertermia Inducida/métodos , Neoplasias Ováricas/tratamiento farmacológico , Doxorrubicina/farmacología
5.
Biotechnol Bioeng ; 120(12): 3570-3584, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37707439

RESUMEN

In this study, eight nonconserved residues with exposed surfaces and flexible conformations of the homotetrameric PGUS (ß-glucuronidase from Aspergillus oryzae Li-3) were identified. Single-point mutation into cysteine enabled the thiol-maleimide reaction and site-specific protein assembly using a two-arm polyethylene glycol (PEG)-maleimide crosslinker (Mal2 ). The Mal2 (1k) (with 1 kDa PEG spacer)-crosslinked PGUS assemblies showed low crosslinking efficiency and unimproved thermostability except for G194C-Mal2 (1k). To improve the crosslinking efficiency, a lengthened crosslinker Mal2 (2k) (with 2 kDa PEG spacer) was used to produce PGUS assembly and a highly improved thermostability was achieved with a half-life of 47.2-169.2 min at 70°C, which is 1.04-3.74 times that of wild type PGUS. It is found that the thermostability of PGUS assembly was closely associated with the formation of inter-tetramer assembly and intratetramer crosslinking, rather than the PEGylation of the enzyme. Therefore, the four-arm PEG-maleimide crosslinker Mal4 (2k) (with 2 kDa PEG spacer) was employed to simultaneously increase the inter-tetramer assembly and intratetramer crosslinking, and the resulting PGUS assemblies showed further improved thermostabilities compared with Mal2 (2k)-crosslinked assemblies. Finally, the application of PGUS assemblies with significantly improved thermostability to the bioconversion of GL proved that the PGUS assembly is a strong catalyst for glycyrrhizin (GL) hydrolysis in industrial applications.


Asunto(s)
Glucuronidasa , Ácido Glicirrínico , Glucuronidasa/química , Ácido Glicirrínico/metabolismo , Hidrólisis , Catálisis , Maleimidas , Polietilenglicoles
6.
J Nanobiotechnology ; 21(1): 175, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37264420

RESUMEN

BACKGROUND: Congenital disorders of glycosylation (CDGs) are genetic diseases caused by gene defects in glycan biosynthesis pathways, and there is an increasing number of patients diagnosed with CDGs. Because CDGs show many different clinical symptoms, their accurate clinical diagnosis is challenging. Recently, we have shown that liposome nanoparticles bearing the ALG1-CDG and PMM2-CDG biomarkers (a tetrasaccharide: Neu5Ac-α2,6-Gal-ß1,4-GlcNAc-ß1,4-GlcNAc) stimulate a moderate immune response, while the generated antibodies show relatively weak affinity maturation. Thus, mature antibodies with class switching to IgG are desired to develop high-affinity antibodies that may be applied in medical applications. RESULTS: In the present study, a liposome-based vaccine platform carrying a chemoenzymatic synthesized phytanyl-linked tetrasaccharide biomarker was optimized. The liposome nanoparticles were constructed by dioleoylphosphatidylcholine (DOPC) to improve the stability and immunogenicity of the vaccine, and adjuvanted with the NKT cell agonist PBS57 to generate high level of IgG antibodies. The results indicated that the reformulated liposomal vaccine stimulated a stronger immune response, and PBS57 successfully induce an antibody class switch to IgG. Further analyses of IgG antibodies elicited by liposome vaccines suggested their specific binding to tetrasaccharide biomarkers, which were mainly IgG2b isotypes. CONCLUSIONS: Immunization with a liposome vaccine carrying a carbohydrate antigen and PBS57 stimulates high titers of CDG biomarker-specific IgG antibodies, thereby showing great potential as a platform to develop rapid diagnostic methods for ALG1-CDG and PMM2-CDG.


Asunto(s)
Células T Asesinas Naturales , Vacunas , Humanos , Liposomas , Cambio de Clase de Inmunoglobulina , Células T Asesinas Naturales/metabolismo , Oligosacáridos , Adyuvantes Inmunológicos , Biomarcadores/metabolismo , Inmunoglobulina G , Inmunidad
7.
Oral Dis ; 29(7): 2827-2836, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36579641

RESUMEN

OBJECTIVES: Stem cells of the apical papilla (SCAPs) provide promising candidates for dental pulp regeneration. Despite great advances in the transcriptional controls of the SCAPs fate, little is known about the regulation of SCAP differentiation. MATERIALS AND METHODS: Short hairpin RNAs and full-length RNA were used to deplete or overexpress lysine demethylase 4D (KDM4D) gene expression. Western blotting, real-time RT-PCR, alizarin red staining, and scratch migration assays were used to study the role of KDM4D and the ribosomal protein encoded by RPS5 in SCAPs. RNA microarray, chromatin Immunoprecipitation (ChIP), and co-immunoprecipitation (Co-IP) assays were performed to explore the underlying molecular mechanisms. RESULTS: KDM4D enhanced the osteo/dentinogenic differentiation, migration, and chemotaxis of SCAPs. The microarray results revealed that 88 mRNAs were differentially expressed in KDM4D-overexpressed SCAPs. ChIP results showed knock-down of KDM4D increased the level of H3K9me2 and H3K9me3 in CNR1 promoter region. There were 37 possible binding partners of KDM4D. KDM4D was found to combine with RPS5, which also promoted the osteo/dentinogenic differentiation, migration, and chemotaxis of SCAPs. CONCLUSIONS: KDM4D promoted the osteo/dentinogenic differentiation and migration potential of SCAPs in combination with RPS5, which provides a therapeutic clue for improving SCAPs-based dental tissue regeneration.


Asunto(s)
Pulpa Dental , Histona Demetilasas con Dominio de Jumonji , Regeneración , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Papila Dental/metabolismo , Pulpa Dental/metabolismo , Osteogénesis/genética , ARN Interferente Pequeño , Células Madre , Humanos , Histona Demetilasas con Dominio de Jumonji/genética
8.
Molecules ; 29(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38202775

RESUMEN

In this study, a capillary microfluidic device was constructed, and sodium alginate solution and a pH-sensitive hydrophobic polymer (p(BMA-co-DAMA-co-MMA)) solution were introduced into the device for the preparation of hydrogel fibers loaded with polymer microspheres. The structure of the microsphere fiber, including the size and spacing of the microspheres, could be controlled by flow rate, and the microspheres were able to degrade and release cargo responding to acidic pH conditions. By modification with carboxymethylcellulose (CMC), alginate hydrogel exhibited enhanced pH sensitivity (shrunk in acidic while swollen in basic condition). This led to an impact on the diffusion rate of the molecules released from the inner microspheres. The microsphere fiber showed dramatic and negligible degradation and drug release in tumor cell (i.e., A431 and A549 cells) and normal cell environments, respectively. These results indicated that the microsphere fiber prepared in this study showed selective drug release in acidic environments, such as tumor and inflammation sites, which could be applied as a smart surgical dressing with normal tissue protective properties.


Asunto(s)
Alginatos , Microfluídica , Liberación de Fármacos , Microesferas , Hidrogeles , Polímeros , Concentración de Iones de Hidrógeno
9.
Angew Chem Int Ed Engl ; 62(3): e202214695, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36412223

RESUMEN

The use of sequence-defined digital polymers for data storage and encryption has received increasing attention due to their precision structures similar to natural biomacromolecules (e.g., DNA) but increased stability. However, the rapid development of sequencing techniques raises the concern of information leakage. Herein, dendritic quaternary-encoded oligourethanes bearing a photoresponsive trigger, self-immolative backbones, and a mass spectrometry tag of PEG dendron have been developed for data encryption. Although the sequence information in linear analogs can be readily deciphered by mass spectrometry, sequencing of dendritic oligourethanes cannot be achieved by either primary MS or tandem MS/MS owing to the unique spatial conformation. Intriguingly, the fragmentation pathways of a quaternary dendrimer under MS/MS conditions can be converted to 2772-bit 2D matrices with ≈1.98×1087 permutations, serving as high-strength encryption keys for highly reliable data encryption.


Asunto(s)
Seguridad Computacional , Espectrometría de Masas en Tándem , Polímeros , ADN , Almacenamiento y Recuperación de la Información
10.
J Am Chem Soc ; 144(40): 18419-18428, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36166420

RESUMEN

Surface modification with poly(ethylene glycol) (PEGylation) is an effective strategy to improve the colloidal stability of nanoparticles (NPs) and is often used to minimize cellular uptake and clearance of NPs by the immune system. However, PEGylation can also trigger the accelerated blood clearance (ABC) phenomenon, which is known to reduce the circulation time of PEGylated NPs. Herein, we report the engineering of stealth PEG NPs that can avoid the ABC phenomenon and, when modified with hyaluronic acid (HA), show specific cancer cell targeting and drug delivery. PEG NPs cross-linked with disulfide bonds are prepared by using zeolitic imidazolate framework-8 NPs as templates. The reported templating strategy enables the simultaneous removal of the template and formation of PEG NPs under mild conditions (pH 5.5 buffer). Compared to PEGylated liposomes, PEG NPs avoid the secretion of anti-PEG antibodies and the presence of anti-PEG IgM and IgG did not significantly accelerate the blood clearance of PEG NPs, indicating the inhibition of the ABC effect for the PEG NPs. Functionalization of the PEG NPs with HA affords PEG NPs that retain their stealth properties against macrophages, target CD44-expressed cancer cells and, when loaded with the anticancer drug doxorubicin, effectively inhibit tumor growth. The innovation of this study lies in the engineering of PEG NPs that can circumvent the ABC phenomenon and that can be functionalized for the improved and targeted delivery of drugs.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/química , Disulfuros , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Humanos , Ácido Hialurónico/química , Inmunoglobulina G , Inmunoglobulina M/uso terapéutico , Liposomas , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Polietilenglicoles/química
11.
Small ; 18(34): e2201957, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35802903

RESUMEN

Severe inflammation and myogenic differentiation disorder are the major obstacles to skeletal muscle healing after injury. MicroRNAs (miRNAs) play an important role as regulatory molecules during the process of muscle healing, but the detailed mechanism of miRNA-mediated intercellular communication between myoblasts and macrophages remains unclear. Here, it is reported that myoblasts secrete miRNAs-enriched exosomes in the inflammatory environment, through which miR-224 is transferred into macrophages to inhibit M2 polarization. Further data demonstrate that WNT-9a may be a direct target of miR-224 for macrophage polarization. In turn, the secretome of M1 macrophages impairs myogenic differentiation and promotes proliferation. Single-cell integration analysis suggests that the elevation of exosome-derived miR-224 is caused by the activation of the key factor E2F1 in myoblasts and demonstrates the RB/E2F1/miR-224/WNT-9a axis. In vivo results show that treatment with antagomir-224 or liposomes containing miR-224 inhibitors suppresses fibrosis and improves muscle recovery. These findings indicate the importance of the crosstalk between myoblasts and macrophages via miRNA-containing exosomes in the regulation of macrophage polarization and myogenic differentiation/proliferation during muscle healing. This study provides a strategy for treating muscle injury through designing an M2 polarization-enabling anti-inflammatory and miRNA-based bioactive material.


Asunto(s)
Exosomas , MicroARNs , Antiinflamatorios , Materiales Biocompatibles , Liposomas , Macrófagos , MicroARNs/genética , Músculos
12.
Cell Tissue Res ; 389(2): 187-199, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543755

RESUMEN

Tooth loss and maxillofacial bone defect are common diseases, which seriously affect people's health. Effective tooth and maxillofacial bone tissue regeneration is a key problem that need to be solved. In the present study, we investigate the role of PRMT6 in osteo/odontogenic differentiation and migration capacity by using SCAPs. Our results showed that knockdown of PRMT6 promoted the osteo/odontogenic differentiation compared with the control group, as detected by alkaline phosphatase activity, alizarin red staining, and the indicators of osteo/odontogenic differentiation measured by Western blot. In addition, overexpression of PRMT6 inhibited the osteo/odontogenic differentiation potentials of SCAPs. Then, knockdown of PRMT6 promoted the migration ability and overexpression of PRMT6 inhibited the migration ability in SCAPs. Mechanically, we discovered that the depletion of PRMT6 promoted the expression of CXCL12 by decreasing H3R2 methylation in the promoter region of CXCL12. In addition, PRMT6 formed a protein complex with LMNA, a nuclear structural protein. Depletion of LMNA inhibited the osteo/odontogenic differentiation and CXCL12 expression and increased the intranucleus PRMT6 in SCAPs. To sum up, PRMT6 might inhibit the osteo/odontogenic differentiation and migration ability of SCAPs via inhibiting CXCL12. And LMNA might be a negative regulator of PRMT6. It is suggested that PRMT6 may be a key target for SCAP-mediated bone and tooth tissue regeneration.


Asunto(s)
Odontogénesis , Osteogénesis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Papila Dental , Humanos , Lamina Tipo A/metabolismo , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/farmacología , Transducción de Señal , Células Madre
13.
Inorg Chem ; 61(51): 21016-21023, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36493467

RESUMEN

A Cd(II)-based coordination polymer {[Cd2(5-F-1,3-bpeb)2(FBA)4]·H2O}n (CP1) was obtained from Cd(II) salt, 5-fluoro-1,3-bis[2-(4-pyridyl)ethenyl]benzene (5-F-1,3-bpeb), and p-fluorobenzoic acid (HFBA). Within the one-dimensional chain structure of CP1, a pair of 5-F-1,3-bpeb was arranged in a face-to-face style. Upon UV irradiation and heat treatment, multiple cyclobutane isomers, including specific monocyclobutanes (1 with an endo-cyclobutane ring in CP1-1 and 1' with an exo-cyclobutane ring in CP1-1') and dicyclobutanes (endo,endo-dicyclobutane 2α in CP1-2α, exo,endo-dicyclobutane 2ß in CP1-2ß, and exo,exo-dicyclobutane 2γ in CP1-2γ) were stereoselectively produced. These isomers could be interconverted inside the CP via cutting/coupling specific bonds, which may be regarded as a type of molecular surgery. The precision of cutting/coupling relied on the thermal stability of the cyclobutanes and the alignment of the reactive alkene centers. The conversion processes were tracked through nuclear magnetic resonance, in situ powder X-ray diffraction, and IR spectroscopy. This approach can be considered as skeletal editing to construct complex organic compounds directly from one precursor.


Asunto(s)
Cadmio , Polímeros , Polímeros/química , Difracción de Rayos X
14.
J Nanobiotechnology ; 20(1): 309, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764963

RESUMEN

BACKGROUND: Diabetic foot ulcer (DFU), persistent hyperglycemia and inflammation, together with impaired nutrient and oxygen deficiency, can present abnormal angiogenesis following tissue injury such that these tissues fail to heal properly. It is critical to design a new treatment method for DFU patients with a distinct biomechanism that is more effective than current treatment regimens. METHOD: Graphene oxide (GO) was combined with a biocompatible polymer as a kind of modified GO-based hydrogel. The characterization of our biomaterial was measured in vitro. The repair efficiency of the biomaterial was evaluated in the mouse full-skin defect models. The key axis related to diabetic wound (DW) was identified and investigated using bioinformatics analyses and practical experiments. RESULT: In the study, we found that our modified GO-based wound dressing material is a promising option for diabetic wound. Secondly, our biomaterial could enhance the secretion of small EVs (sEVs) with more miR-21 by adipose-derived mesenchymal stem cells (AD-MSCs). Thirdly, the PVT1/PTEN/IL-17 axis was found to be decreased to promote DFU wound healing by modifying miR-21 with the discovery of PVT1 as a critical LncRNA by bioinformatics analysis and tests. CONCLUSION: These findings could aid in the development of clinical care strategies for DFU wounds.


Asunto(s)
Diabetes Mellitus , Pie Diabético , MicroARNs/genética , Animales , Materiales Biocompatibles/farmacología , Modelos Animales de Enfermedad , Grafito , Interleucina-17 , Ratones , Fosfohidrolasa PTEN/metabolismo , ARN Largo no Codificante/metabolismo , Cicatrización de Heridas
15.
Am J Orthod Dentofacial Orthop ; 161(6): e544-e553, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35311653

RESUMEN

INTRODUCTION: Smile analysis in horizontally angled views is indispensable for esthetic assessment and could reveal teeth-to-lip disharmony, which might escape discovery in the frontal and profile views. However, evidence is lacking on where the anterior teeth should be positioned for esthetics in angled smiles. METHODS: Based on 3-dimensional facial image processing and geometric analysis, the lip edges were projected to the horizontal plane, and the horizontal teeth-to-lip relation was simplified and represented by the distances from dental landmarks to lower bow-shaped curves (LBSC), with the distance from facial-axis (FA) point of the canine to LBSC (FA-tangent line [TL] distance) identified as the key parameter. Using photographic modification and esthetic assessment, the effect of FA-TL distances on the attractiveness of 45° angled smiles was tested, with esthetic ranges identified. A simplified method was developed to obtain the estimative LBSC and FA-TL distances using 2-dimensional photographs and geometric analysis to facilitate clinical application. RESULTS: The FA-TL distance remarkably affected the esthetics of 45° angled smiles. Smiles were attractive when the FA-TL distance ranged from -1.0 to 1.5 mm perceived by orthodontists and from -1.5 to 1.5 mm perceived by laypersons. The 2-dimensional photograph-derived estimative FA-TL distance was not significantly different from that obtained in a 3-dimensional image, validating the simplified method. CONCLUSIONS: The LBSC could serve as a reference frame to determine the lateral limit of the maxillary anterior arch for the esthetics of 45° angled smiles. The FA-TL distance, which represented the spatial relation of the maxillary canine with the lower lip, was an esthetically essential parameter. For females aged 20-30 years, the FA point of the maxillary canines should be positioned no more than 1.5 mm labial or lingual to the LBSC.


Asunto(s)
Estética Dental , Incisivo , Actitud del Personal de Salud , Femenino , Humanos , Maxilar , Ortodoncistas , Sonrisa
16.
Neurogenetics ; 21(2): 79-86, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31832804

RESUMEN

Charcot-Marie-Tooth disease type 2 (CMT2) is a clinically and genetically heterogeneous inherited neuropathy. Although new causative and disease-associated genes have been identified for CMT2 in recent years, molecular diagnoses are still lacking for a majority of patients. We here studied a cohort of 35 CMT2 patients of Chinese descent, using whole exome sequencing to investigate gene mutations and then explored relationships among genotypes, clinical features, and mitochondrial DNA levels in blood as assessed by droplet digital PCR. We identified pathogenic variants in 57% of CMT2 patients. The most common genetic causes in the cohort were MFN2 mutations. Two patients with typical CMT phenotype and neuromyotonia were detected to harbor compound heterozygous variations in the HINT1 gene. In conclusion, our work supports that the molecular diagnostic rate of CMT2 patients can be increased via whole exome sequencing, and our data suggest that assessment of possible HINT1 mutations should be undertaken for CMT2 patients with neuromyotonia.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Pueblo Asiatico/genética , China , Femenino , GTP Fosfohidrolasas/genética , Genotipo , Humanos , Masculino , Proteínas Mitocondriales/genética , Proteínas del Tejido Nervioso/genética , Secuenciación del Exoma
17.
J Environ Sci (China) ; 91: 54-61, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32172982

RESUMEN

Landfill biogas is a potential alternative for fossil fuel, but the containing impurities, volatile methyl siloxanes (simplified as siloxanes), often cause serious problems in gas turbines when applied to generate electricity. In this research, a collecting and analyzing method based on solvent adsorption and purge and trap-gas chromatography-mass spectrometry was established to determine the siloxanes in biogas from a landfill in Jinan, China, and adjacent ambient samples, such as soil, air, and leachate of the landfill. The results showed that, octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) accounted for 63% of total siloxanes; and without considering D4 and D5, the order of detected siloxanes in concentration was found relating to Gibbs free energies of molecules, namely that higher abundant siloxane (except for D4 and D5) usually had lower Gibbs free energy. Additionally, the mass ratio between D4 and octamethyltrisiloxane (L3) in the biogas varied with different garbage age in landfills, possibly revealing the breaking-down of larger siloxane molecules with time. The samples, which were collected from environmental samples adjacent to the landfill, such as soil, water, and air, presented much higher siloxane level than urban or rural area away from landfills. The current H2S scrubber of the landfill biogas could decrease the total siloxanes from 10.7 to 5.75 mg/m3 due to Fe2O3 and a refrigerant drier in a purification system and cyclic siloxanes were more easily removed than linear ones.


Asunto(s)
Biocombustibles/análisis , Siloxanos/análisis , Adsorción , China , Instalaciones de Eliminación de Residuos
18.
Hum Mutat ; 40(12): 2334-2343, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31373411

RESUMEN

Intermediate Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited neuropathies characterized by progressive muscle weakness and atrophy of the distal extremities, distal sensory loss. There were still a large proportion of causative genes for intermediate CMT failed to be identified. Here, using whole-exome sequencing technique, we identified two novel missense mutations in ATP1A1 gene, c.620C>T (p.S207F) and c.2629G>A (p.G877S), in two Chinese CMT families. Further functional analysis revealed that these mutations led to the loss function of the ATP1A1 protein. The two mutations did not affect the levels of messenger RNA but possessed a damaging effect on ATP1A1 protein expression and they downregulated the protein levels of ATP1A1 by promoting its proteasome degradation. Taken together, we confirmed ATP1A1 as a novel causative gene for intermediate CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Secuenciación del Exoma/métodos , Mutación Missense , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adulto , Edad de Inicio , Anciano , Línea Celular , Enfermedad de Charcot-Marie-Tooth/metabolismo , China , Regulación hacia Abajo , Femenino , Células HeLa , Humanos , Masculino , Persona de Mediana Edad , Linaje , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , ATPasa Intercambiadora de Sodio-Potasio/química , Adulto Joven
19.
Epidemiol Infect ; 147: e327, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31884976

RESUMEN

This study attempts to figure out the seasonality of the transmissibility of hand, foot and mouth disease (HFMD). A mathematical model was established to calculate the transmissibility based on the reported data for HFMD in Xiamen City, China from 2014 to 2018. The transmissibility was measured by effective reproduction number (Reff) in order to evaluate the seasonal characteristics of HFMD. A total of 43 659 HFMD cases were reported in Xiamen, for the period 2014 to 2018. The median of annual incidence was 221.87 per 100 000 persons (range: 167.98/100,000-283.34/100 000). The reported data had a great fitting effect with the model (R2 = 0.9212, P < 0.0001), it has been shown that there are two epidemic peaks of HFMD in Xiamen every year. Both incidence and effective reproduction number had seasonal characteristics. The peak of incidence, 1-2 months later than the effective reproduction number, occurred in Summer and Autumn, that is, June and October each year. Both the incidence and transmissibility of HFMD have obvious seasonal characteristics, and two annual epidemic peaks as well. The peak of incidence is 1-2 months later than Reff.


Asunto(s)
Enfermedad de Boca, Mano y Pie/transmisión , Modelos Biológicos , Estaciones del Año , China/epidemiología , Simulación por Computador , Enfermedad de Boca, Mano y Pie/epidemiología , Humanos , Incidencia , Reproducibilidad de los Resultados
20.
Macromol Rapid Commun ; 40(16): e1900168, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31206971

RESUMEN

Porous organic polymers (POPs) have enormous applications in various fields and thus have received a lot of research attention in recent decades. Numerous synthetic methods have been developed, but mild synthesis conditions and fast polymerization rate are highly desired. Herein, high porous POPs with high surface areas from aromatic vinyl monomers by using acid catalysis method is reported. The polymerization is ultrafast and could be accomplished even in 5 min at room temperature. Furthermore, the surface area can be tuned by using various acid catalysts and controlling the reaction time. Due to the high surface area, these POPs show promising adsorption of carbon dioxide and hydrogen, respectively. Furthermore, the large π-system of the building block and high surface area of the POPs also make them show potential applications in photocatalytic hydrogen evolution as well as promising catalyst support for metal nanoparticles.


Asunto(s)
Hidrocarburos Aromáticos/química , Polímeros/química , Compuestos de Vinilo/química , Catálisis , Concentración de Iones de Hidrógeno , Estructura Molecular , Tamaño de la Partícula , Polimerizacion , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA