Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomacromolecules ; 24(8): 3819-3834, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37437256

RESUMEN

One-dimensional (1D) nanomaterials of conductive polypyrrole (PPy) are competitive biomaterials for constructing bioelectronics to interface with biological systems. Synergistic synthesis using lignocellulose nanofibrils (LCNF) as a structural template in chemical oxidation of pyrrole with Fe(III) ions facilitates surface-confined polymerization of pyrrole on the nanofibril surface within a submicrometer- and micrometer-scale fibril length. It yields a core-shell nanocomposite of PPy@LCNF, wherein the surface of each individual fibril is coated with a thin nanoscale layer of PPy. A highly positive surface charge originating from protonated PPy gives this 1D nanomaterial a durable aqueous dispersity. The fibril-fibril entanglement in the PPy@LCNFs facilely supported versatile downstream processing, e.g., spray thin-coating on glass, flexible membranes with robust mechanics, or three-dimensional cryogels. A high electrical conductivity in the magnitude of several to 12 S·cm-1 was confirmed for the solid-form PPy@LCNFs. The PPy@LCNFs are electroactive and show potential cycling capacity, encompassing a large capacitance. Dynamic control of the doping/undoping process by applying an electric field combines electronic and ionic conductivity through the PPy@LCNFs. The low cytotoxicity of the material is confirmed in noncontact cell culture of human dermal fibroblasts. This study underpins the promises for this nanocomposite PPy@LCNF as a smart platform nanomaterial in constructing interfacing bioelectronics.


Asunto(s)
Nanocompuestos , Polímeros , Humanos , Polímeros/química , Materiales Biocompatibles/química , Pirroles/química , Compuestos Férricos , Nanocompuestos/química , Conductividad Eléctrica
2.
Environ Res ; 191: 110228, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32950517

RESUMEN

Membrane fouling has become the one of main obstacles for the widespread application of membrane technology in water treatment processes. Coagulation as pretreatment is proven to be effective for the alleviation of membrane fouling. In this study, the influence of humic acid (HA)/sodium alginate (SA) fractions in the structure and resistance of cake layer on the membrane surface was investigated. The presence of SA at an appropriate fraction could facilitate the formation of large and loosely branched flocs and thereby form a more permeable cake layer on the membrane surface due to good bridging and charge neutralization abilities of SA molecules. The particle image velocimetry (PIV) technique was employed for monitoring the dynamic formation process of cake layer under different HA/SA fractions. The cake layer with a higher thickness was observed to be rapidly formed on the membrane surface at the presence of SA in water. According to the theoretical analysis, the membrane fouling in coagulation-ultrafiltration (UF) combined system demonstrated to be highly dependent on the size and intra-porosity of flocs. The fractal dimension of flocs might have an impact on the resistance of cake layer through affecting the porosity of aggregated flocs. The SA molecules could be used as the coagulant aid for effective alleviation of membrane fouling and the improvement of filtration performance in a coagulation-UF combined system.


Asunto(s)
Ultrafiltración , Purificación del Agua , Alginatos , Sustancias Húmicas/análisis , Membranas Artificiales
3.
Adv Healthc Mater ; 12(19): e2203243, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929700

RESUMEN

Microgel assembly as void-forming bioinks in 3D bioprinting has evidenced recent success with a highlighted scaffolding performance of these bottom-up biomaterial systems in supporting the viability and function of the laden cells. Here, a ternary-component aqueous emulsion is established as a one-step strategy to integrate the methacrylated gelatin (GelMA) microgel fabrication and assembly through vat photopolymerization in situ using digital light processing (DLP)-based bioprinting. The as-proposed aqueous emulsion is featured with the partitioning of a secondary photo-crosslinkable polysaccharide, methacrylated galactoglucomannan (GGMMA) derived from plant source in both the dispersed phase of GelMA droplets and the continuous phase of dextran (Dex). As an emulgator, GGMMA renders enhanced stability of the aqueous emulsion bioresins. Strategically, the photo-crosslinkable GGMMA adheres the GelMA microgels that are conveniently converted from emulsion droplets to form hydrogel construct in layer-by-layer curing to accommodate the laden cells directly mixed in the aqueous emulsion. The spatially interconnected void space left by the removal of Dex benefits the cell growth under the guidance of the microgel surface and supports cell colonization within the macroscopic porous hydrogel. This work amends a low-concentration and cost-effective bioresin that is highly applicable for facilely fabricating microgel assembly as a porous hydrogel construct in DLP-based bioprinting.


Asunto(s)
Bioimpresión , Microgeles , Ingeniería de Tejidos , Emulsiones , Materiales Biocompatibles , Hidrogeles , Gelatina , Andamios del Tejido , Impresión Tridimensional
4.
Carbohydr Polym ; 297: 119976, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36184128

RESUMEN

To date, the energy-intensive production and high-water content severely limits nanocellulose applications on a large scale off-site. In this study, adding water-soluble polysaccharides (PS) to achieve an integrated process of water-redispersible nanocellulose production was well established. The addition of PS, in particular carboxymethylated-galactoglucomannan (cm-GGM), facilitates fibre fibrillation enabling homogenization at a higher solid content at 1.5 wt% compared with around 0.4 wt% for neat fibre. More importantly, the addition of cm-GGM saved 73 % energy in comparison without PS addition. Good water redispersibility of thus-prepared nanocellulose was validated in viewpoints of size distribution, morphology, viscosity and film properties as compared with neat nanocellulose. The tensile strength and optical transmittance of nanocellulose films increased to 116 MPa and 77 % compared to those without PS addition of 62 MPa and 74 %, respectively. Collectively, this study provides a new avenue for large-volume production of redispersible nanocellulose at a high solid content with less energy-consumption.


Asunto(s)
Celulosa , Agua , Polisacáridos , Resistencia a la Tracción
5.
Carbohydr Polym ; 276: 118780, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34823793

RESUMEN

We propose an injectable nanocomposite hydrogel that is photo-curable via light-induced thiol-ene addition between methacrylate modified O-acetyl-galactoglucomannan (GGMMA) and thiolated cellulose nanocrystal (CNC-SH). Compared to free-radical chain polymerization, the orthogonal step-growth of thiol-ene addition allows a less heterogeneous hydrogel network and more rapid crosslinking kinetics. CNC-SH reinforced the GGMMA hydrogel as both a nanofiller and a crosslinker to GGMMA resulting in an interpenetrating network via thiol-ene addition. Importantly, the mechanical stiffness of the GGMMA/CNC-SH hydrogel is mainly determined by the stoichiometric ratio between the thiol groups on CNC-SH and the methacrylate groups in GGMMA. Meanwhile, the bioactive glass nanoparticle (BaGNP)-laden hydrogels of GGMMA/CNC-SH showed a sustained release of therapeutic ions in simulated body fluid in vitro, which extended the bioactive function of hydrogel matrix. Furthermore, the suitability of the GGMMA/CNC-SH formulation as biomaterial resin to fabricate digitally designed hydrogel constructs via digital light processing (DLP) lithography printing was evaluated.


Asunto(s)
Celulosa/química , Vidrio/química , Mananos/química , Nanogeles/química , Nanopartículas/química , Compuestos de Sulfhidrilo/química , Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Hidrogeles/química , Inyecciones/métodos , Iones/química , Metacrilatos/química , Polimerizacion , Impresión Tridimensional , Ingeniería de Tejidos/métodos
6.
Dis Markers ; 2021: 9370758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966466

RESUMEN

BACKGROUND: Clinical studies have shown that ankylosing spondylitis (AS) could be significantly improved by Governor Vessel moxibustion (GVM) therapy. OBJECTIVE: Study whether GVM therapy alleviates the clinical symptoms of AS by modulating intestinal microbiota. METHODS: A total of 9 AS patients and 9 paired healthy individuals were enrolled, and GVM therapy was provided to the AS patients. Stool, urine, and saliva samples from the healthy individuals and the AS patients before and after GVM therapy were collected, and 16S rRNA gene sequencing was performed for microbiota analysis. RESULTS: We found that GVM therapy can significantly alleviate the symptoms of AS, such as diarrhea, abdominal pain, and bloating. GVM therapy also decreased the abundances of Bacteroides and Prevotella while increasing the abundances of beneficial bacteria, such as Lactobacillus, in the gut microbiota of the AS patients. The analyses for AS clinical data and microbial abundances in AS patients revealed their multiple significant correlations (P < 0.01); for example, an unclassified crystal was positively correlated with AF12 and Delftia, monocyte had a negative correlation with Scardovia, and human leukocyte antigen-B27 was negatively correlated with Catenibacterium, Coprococcus, and Oscillospira. CONCLUSIONS: Overall, these findings demonstrate that GVM therapy can alleviate AS clinical symptoms, and at the same time, it improves the microbial structure of microbiota in AS patients. This trial is registered with Chinese Clinical Trial Registry ChiCTR2100051907.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Medicina Tradicional China , Moxibustión , Espondilitis Anquilosante/terapia , Dolor Abdominal/prevención & control , Adulto , Diarrea/prevención & control , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S , Saliva/inmunología , Orina/microbiología
7.
J Biomed Mater Res A ; 102(12): 4301-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24497414

RESUMEN

To integrate tissue engineering concepts into strategies to repair spinal cord injury (SCI) has been a hotspot in recent years, and the choice of scaffolding material is crucial to tissue engineering. Recently, decellularized nerve scaffold becomes a central concern due to its peculiar superiority. In this study, the decellularized nerve scaffold was prepared with three different methods and a comparison was made to acquire an ideal scaffold materials. All sciatic nerves from Sprague-Dawley (SD) rats were randomly divided into four groups: A: normal control group, B: TritonX-100 with sodium deoxycholate group, C: TritonX-100 with enzyme group and D: freezing-thawing with enzyme group. Histology and transmission electron microscope were exploited to evaluate the effect of removing cells and immunological histological chemistry was exploited to evaluate immunogenicity. Meanwhile the mechanical properties were evaluated by mechanics index. Hematoxylin and eosin (HE) staining and electron microscopic examinations reveal that the cell components and myelin sheaths are the least in the freezing-thawing with enzyme group. Immunohistochemistry shows that the immunogenicity is lower in group B, C, and D than the control group, and the group D has the lowest immunogenicity. Mechanical testing shows that there is no significant difference after acellular processing. Sciatic nerve, cell-extracted by freezing-thawing with enzyme, could obtain the ideal scaffold materials which has no cells and myelin sheaths. In addition, the decellularized nerve scaffold has no immunogenicity and the mechanical property of normal sciatic nerve is preserved.


Asunto(s)
Ensayo de Materiales , Nervio Ciático/química , Traumatismos de la Médula Espinal/terapia , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Masculino , Octoxinol/química , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA