Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 22(20): 8233-8240, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36173109

RESUMEN

Intracellular protein delivery has attracted increasing attentions in biomedical applications. However, current delivery systems usually have poor serum stability due to the competitive binding of serum proteins to the polymers during delivery. Here, we report a reversible cross-linking strategy to improve the serum stability of polymers for robust intracellular protein delivery. In the proposed delivery system, nanoparticles are assembled by cargo proteins and cationic polymers and further stabilized by a glutathione-cleavable and traceless cross-linker. The cross-linked nanoparticles show high stability and efficient cell internalization in serum containing medium and can release the cargo proteins in response to intracellular glutathione and acidic pH in a traceless manner. The generality and versatility of the proposed strategy were demonstrated on different types of cationic polymers, cargo proteins, as well as cell lines. The study provides a facile and efficient method for improving the serum tolerance of cationic polymers in intracellular protein delivery.


Asunto(s)
Nanopartículas , Polímeros , Cationes , Glutatión , Sistemas de Liberación de Medicamentos
2.
Sci Adv ; 10(16): eadl4336, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38630829

RESUMEN

Developing protein drugs that can target intracellular sites remains a challenge due to their inadequate membrane permeability. Efficient carriers for cytosolic protein delivery are required for protein-based drugs, cancer vaccines, and CRISPR-Cas9 gene therapies. Here, we report a screening process to identify highly efficient materials for cytosolic protein delivery from a library of dual-functionalized polymers bearing both boronate and lipoic acid moieties. Both ligands were found to be crucial for protein binding, endosomal escape, and intracellular protein release. Polymers with higher grafting ratios exhibit remarkable efficacies in cytosolic protein delivery including enzymes, monoclonal antibodies, and Cas9 ribonucleoprotein while preserving their activity. Optimal polymer successfully delivered Cas9 ribonucleoprotein targeting NLRP3 to disrupt NLRP3 inflammasomes in vivo and ameliorate inflammation in a mouse model of psoriasis. Our study presents a promising option for the discovery of highly efficient materials tailored for cytosolic delivery of specific proteins and complexes such as Cas9 ribonucleoprotein.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Técnicas de Transferencia de Gen , Terapia Genética , Polímeros/química , Ribonucleoproteínas/genética
3.
ACS Appl Mater Interfaces ; 9(21): 17757-17768, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28481085

RESUMEN

To improve the therapeutic index of cisplatin (CDDP), we present here a new paradigm of drug-induced self-assembly by harnessing phosphato-platinum complexation. Specifically, we show that a phosphato-platinum cross-linked micelle (PpY/Pt) can be generated by using a block copolymer methoxy-poly(ethylene glycol)-block-poly(l-phosphotyrosine) (mPEG-b-PpY). Coating of PpY/Pt with a R9-iRGD peptide by simple mixing affords a targeting micelle with near neutral-charged surface (iPpY/Pt). The micelles feature in well-controlled sizes below 50 nm and high stability under physiological conditions, and can withstand various environmental stresses. Importantly, the micelles demonstrate on-demand drug release profiles in response to pathological cues such as high ATP concentration and acidic pH. In vitro, the micelles are efficiently internalized and almost equally potent compared to CDDP. Moreover, iPpY/Pt induce greater cytotoxicity than PpY/Pt in a 3D tumor spheroid model likely due to its deeper tumor penetration. In vivo, the micelles exhibit prolonged circulation half-lives, enhanced tumor accumulation, excellent tumor growth inhibition in a xenograft HeLa model and an orthotropic mammary 4T1 model, and improved safety profiles evidenced by the reduced nephrotoxicity. Together, this work demonstrates for the first time that phosphato-platinum complexation can be exploited for effective delivery of CDDP, and suggests a paradigm shift of constructing nanosystems for other anticancer metallodrugs.


Asunto(s)
Platino (Metal)/química , Antineoplásicos , Cisplatino , Sistemas de Liberación de Medicamentos , Micelas , Polietilenglicoles , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA