Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38180325

RESUMEN

A novel ligninase-producing and cellulose-degrading actinobacterium, designated strain NEAU-A12T, was isolated from a soil sample collected from Aohan banner, Chifeng City, Inner Mongolia Autonomous Region, PR China. A polyphasic taxonomic study was used to establish the status of strain NEAU-A12T. 16S rRNA gene sequence analysis revealed that strain NEAU-A12T belonged to the genus Actinoplanes and showed the highest similarity (98.3 %) to Actinoplanes palleronii DSM 43940T, while showing less than 98.3 % similarity to other members of the genus Actinoplanes. The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and glycosylphosphatidylinositol. The diagnostic sugars in cell hydrolysates were determined to be arabinose, glucose and xylose. The cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H2). The major fatty acids were C15 : 0, C16 : 0, C16 : 1 ω7c and C17 : 0. Meanwhile, genomic analysis revealed a genome size of 10 192 524 bp and a DNA G+C content of 70.6 mol%, and indicated that strain NEAU-A12T had the potential to degrade lignin and cellulose, as well as produce bioactive compounds. In addition, the average nucleotide identity values between strain NEAU-A12T and its reference strains A. palleronii DSM 43940T, Actinoplanes regularis DSM 43151T, Actinoplanes philippinensis DSM 43019T, Actinoplanes xinjiangensis DSM 45184T and Actinoplanes italicus DSM 43146T were 80.3, 80.3, 84.1, 84.3 and 84.0 %, respectively. The levels of digital DNA-DNA hybridization between them were found to be 23.6 % (21.3-26.1 %), 23.8 % (21.5-26.3 %), 28.3 % (25.9-30.8 %), 28.6 % (26.0-30.9 %) and 28.4 % (26.2-31.1 %), respectively. Based on phenotypic, chemotaxonomic and genotypic data, strain NEAU-A12T is considered to represent a novel species of the genus Actinoplanes, for which the name Actinoplanes sandaracinus sp. nov. is proposed, with NEAU-A12T (=CCTCC AA 2020039T=DSM 112043T) as the type strain.


Asunto(s)
Actinoplanes , Celulosa , Suelo , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Filogenia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
2.
Artículo en Inglés | MEDLINE | ID: mdl-35679150

RESUMEN

A Gram-positive, cellulose-degrading actinobacterium, designed strain NEAU-YM18T, was isolated from rhizosphere soil of wheat (Triticum aestivum L.) sampled in Langfang, Hebei Province, PR China. The novel strain was characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics confirmed that strain NEAU-YM18T belonged to the genus Catellatospora. Cells of strain NEAU-YM18T were observed to contain meso- and 3-hydroxy-diaminopimelic acids as diagnostic cell-wall amino acids. The acyl type of the cell-wall muramic acid was glycolyl. The whole-cell hydrolysates were xylose, glucose and ribose. The phospholipids consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were iso-C15 : 0, iso-C16 : 0, C18 : 1 ω9c and summed feature 5 (anteiso-C18 : 0/C18 : 2 ω6,9c). The menaquinones were MK-9(H4), MK-9(H6) and MK-9(H2). The DNA G+C content was 71.1 %. The results of 16S rRNA gene sequence and phylogenetic analyses indicated that strain NEAU-YM18T was closely related to Catellatospora chokoriensis 2-25(1)T (98.4 % 16S rRNA gene sequence similarity), Catellatospora vulcania NEAU-JM1T (98.3%) and Catellatospora sichuanensis H14505T (98.3 %) and formed a branch with C. sichuanensis H14505T. Furthermore, the whole genome phylogeny of strain NEAU-YM18T showed that the strain formed an independent clade. The digital DNA-DNA hybridization results between NEAU-YM18T and C. chokoriensis 2-25(1)T, C. vulcania NEAU-JM1T and C. sichuanensis H14505T were 25.0, 24.7 and 24.7 %, respectively, and the whole-genome average nucleotide identity values between them were 81.5, 81.4 and 81.4 %, respectively. These genetic results and some phenotypic characteristics could distinguish strain NEAU-YM18T from its reference strains. In addition, genomic analysis confirmed that strain NEAU-YM18T had the potential to decompose cellulose and produce bioactive compounds. Therefore, strain NEAU-YM18T represents a novel species of the genus Catellatospora, for which the name Catellatospora tritici sp. nov. is proposed. The type strain is NEAU-YM18T (=CCTCC AA 2020040T=JCM 33977T).


Asunto(s)
Actinobacteria , Celulasa , Técnicas de Tipificación Bacteriana , Composición de Base , Celulasa/genética , Celulasa/metabolismo , Celulosa/metabolismo , ADN Bacteriano/genética , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Rizosfera , Análisis de Secuencia de ADN , Suelo , Microbiología del Suelo , Triticum/microbiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-35412966

RESUMEN

A novel lignin-degrading actinobacterium, designated NEAU-G5T, was isolated from pumpkin rhizosphere soil collected from field in Mudanjiang, Heilongjiang Province, northeast China, and characterized using polyphasic approach. The prior 16S rRNA gene sequence similarities and phylogenic analysis showed that strain NEAU-G5T exhibited close phylogenetic relatedness to Nocardia miyunensis NBRC 108239T (98.82 %), Nocardia nova NBRC 15556T (98.75 %), Nocardia jiangxiensis NBRC 101359T (98.68 %) and Nocardia macrotermitis RB20T (98.61 %). Morphological and chemotaxonomic characteristics indicated that strain NEAU-G5T could be assigned to the genus Nocardia. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid and an unidentified lipid. The predominant menaquinone was MK-8(H4, ω-cycl). The major fatty acids (>10 %) were identified as C16 : 0, C18 : 1 ω9c, 10-methyl C18 : 0 and C18 : 0. Mycolic acids were present. The genomic DNA G+C content of strain NEAU-G5T was 68 mol%. Moreover, based on digital DNA-DNA hybridization and average nucleotide identity values, strain NEAU-G5T could be differentiated from its reference strains. In addition, an azure B plate decolorization test and genomic analysis indicated that strain NEAU-G5T had the ability to degrade lignin. On the basis of polyphasic characteristics, strain NEAU-G5T represents a novel species of the genus Nocardia, with the name Nocardia albiluteola sp. nov. The type strain is NEAU-G5T (=CCTCC AA 2021018T=DSM 110547T).


Asunto(s)
Actinobacteria , Cucurbita , Nocardia , Actinobacteria/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Lignina , Filogenia , ARN Ribosómico 16S/genética , Rizosfera , Análisis de Secuencia de ADN , Suelo , Microbiología del Suelo
4.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36268867

RESUMEN

A novel cellulose-degrading actinobacterium, designated strain NEAU-S10T, was isolated from soil collected from Chifeng, Inner Mongolia Autonomous Region, PR China, and characterized using a polyphasic approach. Pairwise similarity of the 16S rRNA gene sequence showed that strain NEAU-S10T was a representative of Saccharothrix and was closely related to Saccharothrix carnea NEAU-yn17T (99.2 %), Saccharothrix saharensis SA152T (99.0 %), Saccharothrix texasensis DSM 44231T (98.5 %) and Saccharothrix xinjiangensis NBRC 101911T (98.5 %). Physiological and chemotaxonomic characteristics of the strain further supported its affiliation to the genus Saccharothrix. The whole-cell sugars contained galactose, ribose and mannose. The polar lipids contained diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The predominant menaquinones were MK-9(H0), MK-9(H2), MK-9(H4) and MK-10(H4). The major fatty acids were iso-C16 : 0, C16 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C17 : 0. The genomic DNA G+C content was 71.8 mol%. The levels of digital DNA-DNA hybridization between isolate and S. carnea NEAU-yn17T, S. saharensis SA152T and S. texasensis DSM 44231T were 40.1 % (37.6-42.6 %), 38.soap8 % (36.3-41.3 %) and 44.8 % (42.2-47.3 %) and the ANI values between them were determined to be 90.2, 89.8 and 91.7 %, the results indicated that strain NEAU-S10T could be distinguished from its reference strains. The assembled genome sequence of strain NEAU-S10T was found to be 10 305 394 bp long. The NCBI Prokaryotic Genome Annotation Pipeline (PGAP) revealed 8 994 protein-coding genes. Genomic analysis and Congo red staining test indicated that strain NEAU-S10T had the potential to degrade cellulose. The genomic and phenotypic results indicate that strain NEAU-S10T represents a novel species of the genus Saccharothrix, for which the name Saccharothrix luteola sp. nov. is proposed, with NEAU-S10T (=CCTCC AA 2020037T=JCM 34800T) as the type strain.


Asunto(s)
Fosfatidiletanolaminas , Suelo , ARN Ribosómico 16S/genética , Microbiología del Suelo , Vitamina K 2 , Celulosa , Cardiolipinas , Rojo Congo , Galactosa , Manosa , Ribosa , Composición de Base , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/química , Análisis de Secuencia de ADN , Fosfatidilinositoles , Fosfolípidos
5.
Antonie Van Leeuwenhoek ; 114(10): 1529-1540, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34324104

RESUMEN

A bacterial strain, Gram-stain negative, rod-shaped, aerobic and cellulose-degrading, designated NEAU-DD11T, was isolated from rhizosphere soil of rice collected from Northeast Agricultural University in Harbin, Heilongjiang Province, North-east China. Base on 16S rRNA gene sequence analysis, strain NEAU-DD11T belongs to the genus Massilia and shared high sequence similarities with Massilia phosphatilytica 12-OD1T (98.46%) and Massilia putida 6NM-7 T (98.41%). Phylogenetic analysis based on the 16S rRNA gene and whole genome sequences indicated that strain NEAU-DD11T formed lineage related to M. phosphatilytica 12-OD1T and M. putida 6NM-7 T. The major fatty acids of the strain were C16:0, C17:0-cyclo and C16:1ω7c. The respiratory quinone was Q-8. The polar lipids profile of the strain showed the presence of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified polar lipid and an unidentified phospholipid. In addition, the digital DNA-DNA hybridization values between strain NEAU-DD11T and M. phosphatilytica 12-OD1T and M. putida 6NM-7 T were 45.4 and 35.6%, respectively, which are lower than the accepted threshold value of 70%. The DNA G + C content of strain NEAU-DD11T was 66.2%. The whole genome analysis showed the strain contained carbohydrate enzymes such as glycoside hydrolase and polysaccharide lyase, which enabled the strain to have the function of degrading cellulose. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, we conclude that strain NEAU-DD11T represents a novel species of the genus Massilia, for which the name Massilia cellulosiltytica sp. nov. is proposed. The type strain is NEAU-DD11T (= CCTCC AB 2019141 T = DSM 109721 T).


Asunto(s)
Oryza , Técnicas de Tipificación Bacteriana , Celulosa , ADN Bacteriano/genética , Ácidos Grasos , Humanos , Oxalobacteraceae , Filogenia , ARN Ribosómico 16S/genética , Rizosfera , Análisis de Secuencia de ADN , Suelo , Microbiología del Suelo
6.
Antonie Van Leeuwenhoek ; 114(5): 581-590, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33649883

RESUMEN

An aerobic, non-motile, Gram-stain positive, cellulose-degrading actinobacterium, designated strain NEAU-GS84T, was isolated from a forest soil sample collected from Linchun Ridge Forest Park in Sanya, Hainan Province, China, and characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics indicated that strain NEAU-GS84T could belong to the genus Herbidospora. The 16S rRNA gene sequence analysis indeed confirmed that strain NEAU-GS84T belonged to the genus Herbidospora and was most closely related to Herbidospora yilanensis JCM 18062T (99.2% 16S rRNA gene sequence similarity) and Herbidospora galbida NEAU-GS14T (99.0%). The cell wall of strain NEAU-GS84T contained meso-diaminopimelic acid as the major diamino acid and the whole-cell hydrolysates mainly contained glucose, madurose and ribose. The major polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, hydroxyphosphatidylethanolamin, phosphoglycolipids, two phosphatidylinositol mannosides and one unidentified phospholipid. The predominant menaquinone was MK-10(H4). Major fatty acids were 10-methly C17:0, C17:0 and iso-C16:0. These chemotaxonomic data substantiated the affiliation of strain NEAU-GS84T to the genus Herbidospora. The DNA G+C content was 70.7 mol%. The genome size of strain NEAU-GS84T is about 8.37 Mb and contained 41 cellulose-binding domain synthesis genes, 13 ß-glucosidase synthesis genes, 6 endoglucanase synthesis genes and 9 xylanase synthesis genes. Based on digital DNA-DNA hybridization and average nucleotide identity values, the new strain NEAU-GS84T could be differentiated from its closest relatives. Therefore, the strain represents a novel species of the genus Herbidospora, for which the name Herbidospora solisilvae sp. nov. is proposed. The type strain is NEAU-GS84T (= CCTCC AA 2018041T = JCM 33460T).


Asunto(s)
Celulosa , Suelo , Actinobacteria , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos , Bosques , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Vitamina K 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA