Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ecotoxicol Environ Saf ; 270: 115907, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176185

RESUMEN

Fluoride has strong electronegativity and exposes diversely in nature. Water fluoridation is the most pervasive form of occurrence, representing a significant threat to human health. In this study, we investigate the morphometric and physiological alterations triggered by fluoride stimulation during the embryogenesis of zebrafish and reveal its putative effects of stage- and/or dose-dependent. Fluoride exhibits potent biological activity and can be extensively absorbed by the yolk sac, exerting significant effects on the development of multiple organs. This is primarily manifested as restricted nutrient utilization and elevated levels of lipid peroxidation, further leading to the accumulation of superoxide in the yolk sac, liver, and intestines. Moreover, pericardial edema exerts pressure on the brain and eye development, resulting in spinal curvature and reduced body length. Besides, acute fluoride exposure with varying concentrations has led to diverse teratogenic outcomes. A low dose of water fluoridation tends to induce abnormal development of the embryonic yolk sac, while vascular malformation is widely observed in all fluoride-treated groups. The effect of fluoride exposure on blood circulation is universally present, even in zebrafish larvae that do not exhibit obvious deformities. Their swimming behavior is also affected by water fluoridation, resulting in reduced activity and delayed reactions. In conclusion, this study provides valuable insights into the monitoring of environmental quality related to water fluoridation and disease prevention.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Humanos , Fluoruros/toxicidad , Fluoruración , Desarrollo Embrionario , Saco Vitelino , Embrión no Mamífero , Contaminantes Químicos del Agua/toxicidad
2.
Oral Health Prev Dent ; 22: 159-170, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687028

RESUMEN

PURPOSE: To study the therapeutic effect of hemagglutinin-2 and fimbrial (HA2-FimA) vaccine on experimental periodontitis in rats. MATERIALS AND METHODS: The first batch of rats was divided into two groups and immunised with pure water or pVAX1-HA2-FimA at the age of 6, 7, and 9 weeks. After sacrificing the animals, total RNA was extracted from the spleens for RNA high-throughput sequencing (RNA-Seq) analysis. The second batch of rats was divided into four groups (A, B, C, D), and an experimental periodontitis rat model was established by suturing silk thread around the maxillary second molars of rats in groups B, C, and D for 4 weeks. The rats were immunised with pure water, pVAX1-HA2-FimA vaccine, empty pVAX1 vector, and pure water at 10, 11, and 13 weeks of age, respectively. Secretory immunoglobulin A (SIgA) antibodies and cathelicidin antimicrobial peptide (CAMP) levels in saliva were measured by enzyme-linked immunosorbent assay (ELISA). All rats were euthanised at 17 weeks of age, and alveolar bone loss was examined using micro-computed tomography (Micro-CT). RESULTS: Through sequencing analysis, six key genes, including Camp, were identified. Compared with the other three groups, the rats in the periodontitis+pVAX1-HA2-FimA vaccine group showed higher levels of SIgA and CAMP (p < 0.05). Micro-CT results showed significantly less alveolar bone loss in the periodontitis+pVAX1-HA2-FimA vaccine group compared to the periodontitis+pVAX1 group and periodontitis+pure water group (p < 0.05). CONCLUSION: HA2-FimA DNA vaccine can increase the levels of SIgA and CAMP in the saliva of experimental periodontitis model rats and reduce alveolar bone loss.


Asunto(s)
Periodontitis , Vacunas de ADN , Animales , Periodontitis/prevención & control , Periodontitis/inmunología , Ratas , Modelos Animales de Enfermedad , Inmunoglobulina A Secretora/análisis , Proteínas Fimbrias/inmunología , Pérdida de Hueso Alveolar/prevención & control , Catelicidinas , Ratas Sprague-Dawley , Ensayo de Inmunoadsorción Enzimática , Saliva/inmunología , Hemaglutininas/inmunología , Microtomografía por Rayos X , Masculino
3.
Biomed Pharmacother ; 162: 114688, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37068334

RESUMEN

Periodontitis is a chronic inflammatory disease initiated by pathogenic biofilms and host immunity that damages tooth-supporting tissues, including the gingiva, periodontal ligament and alveolar bone. The physiological functions of the oral cavity, such as saliva secretion and chewing, greatly reduce the residence of therapeutic drugs in the area of a periodontal lesion. In addition, complex and diverse pathogenic mechanisms make effectively treating periodontitis difficult. Therefore, designing advanced local drug delivery systems and rational therapeutic strategies are the basis for successful periodontitis treatment. Hydrogels have attracted considerable interest in the field of periodontitis treatment due to their biocompatibility, biodegradability and convenient administration to the periodontal pocket. In recent years, the focus of hydrogel research has shifted to smart stimuli-responsive hydrogels, which can undergo flexible sol-gel transitions in situ and control drug release in response to stimulation by temperature, light, pH, ROS, glucose, or enzymes. In this review, we systematically introduce the development and rational design of emerging smart stimuli-responsive hydrogels for periodontitis treatment. We also discuss the state-of-the-art therapeutic strategies of smart hydrogels based on the pathogenesis of periodontitis. Additionally, the challenges and future research directions of smart hydrogels for periodontitis treatment are discussed from the perspective of developing efficient hydrogel delivery systems and potential clinical applications.


Asunto(s)
Hidrogeles , Periodontitis , Humanos , Sistemas de Liberación de Medicamentos , Temperatura , Liberación de Fármacos , Periodontitis/tratamiento farmacológico
4.
Int J Biol Macromol ; 182: 492-501, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33848548

RESUMEN

A novel 3-D biopolymer-based adsorption-photocatalytic composite, polyaniline/dicarboxyl acid cellulose@graphene oxide was synthesized and was employed to remove the reactive brilliant red K-2G from aqueous solution. The addition of dicarboxyl acid cellulose could improve the morphology, structure, stability and dispersity of the nanocomposite, thus providing excellent adsorption and photocatalysis performance to the product. Batch of experiments were conducted in two scenarios: adsorption followed by photocatalysis process and simultaneous adsorption-photocatalysis process. For the first scenario, adsorption equilibrium can be reached within 25 min, the expected adsorption capacity was 447.0 mg·g-1; the subsequent photocatalysis process was carried out under light irradiation and the removal capacity could further improve to 729.0 mg·g-1 under equilibrium state (about 180 min). For the simultaneous adsorption-photocatalytic process, the removal capacity was about 558.1 mg·g-1 at about 25 min and the total removal capacity could reach to 733.3 mg·g-1 under equilibrium state. PANI-DCC@GO exhibited excellent reusability and had potential in the treatment of dyes polluted wastewater.


Asunto(s)
Compuestos de Anilina/química , Compuestos Azo/química , Celulosa/análogos & derivados , Grafito/química , Purificación del Agua/métodos , Adsorción , Catálisis , Ácidos Dicarboxílicos/química , Procesos Fotoquímicos
5.
Langmuir ; 26(10): 7007-14, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20092347

RESUMEN

The sulfonated phenylenevinylene polyanion derivate (APPV) and exfoliated Mg-Al-layered double hydroxide (LDH) monolayers were alternatively assembled into ordered ultrathin films (UTFs) employing a layer-by-layer method, which shows uniform yellow luminescence. UV-vis absorption and fluorescence spectroscopy present a stepwise and regular growth of the UTFs upon increasing deposited cycles. X-ray diffraction, atomic force microscopy, and scanning electron microscopy demonstrate that the UTFs are orderly periodical layered structure with a thickness of 3.3-3.5 nm per bilayer. The APPV/LDH UTFs exhibit well-defined polarized photoemission characteristic with the maximum luminescence anisotropy of approximately 0.3. Moreover, the UTF exhibit longer fluorescence lifetime (3-3.85-fold) and higher photostability than the drop-casting APPV film under UV irradiation, suggesting that the existence of a LDH monolayer enhances the optical performance of the APPV polyanion. A combination study of electrochemistry and periodic density functional theory was used to investigate the electronic structure of the APPV/LDH system, illustrating that the APPV/LDH UTF is a kind of organic-inorganic hybrid multiple quantum well (MQW) structure with a low band energy of 1.7-1.8 eV, where the valence electrons of APPV can be confined into the energy wells formed by the LDH monolayers effectively. Therefore, this work not only gives a feasible method for fabricating a luminescence ultrathin film but also provides a detailed understanding of the geometric and electronic structures of photoactive polyanions confined between the LDH monolayers.


Asunto(s)
Hidróxido de Aluminio/química , Simulación por Computador , Hidróxido de Magnesio/química , Membranas Artificiales , Modelos Químicos , Polivinilos/química , Puntos Cuánticos , Aniones/química , Combinación de Medicamentos , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
6.
Protoplasma ; 257(6): 1507-1517, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32577829

RESUMEN

Carrot is a root crop consumed worldwide and has great nutritional qualities. It is considered as one of the ten most important vegetable crops. Cytokinins are an essential class of the plant hormones that regulate many processes of plant growth. Till now, the effects of cytokinin, BAP, on lignin biosynthesis and related gene expression profiles in carrot taproot is unclear. In order to investigate the effect of applied BAP on lignin-related gene expression profiles, lignin accumulation, anatomical structures, and morphological characters in carrot taproots. Carrot roots were treated with different concentrations of BAP (0, 10, 20, and 30 mg L-1). The results showed that the application of BAP significantly increased plant length, shoot fresh weight, root fresh weight, and taproot diameter. In addition, BAP at 20 mg L-1 or 30 mg L-1 enhanced the average number of petioles. BAP treatment led to increased number and width of xylem vessels. The parenchyma cell numbers of pith were significantly induced in taproots treated with the BAP at a concentration of 30 mg L-1. BAP significantly upregulated most of the expression levels of lignin biosynthesis genes, caused elevated lignin accumulation in carrot taproots. Our results indicate that BAP may play important roles in growth development and lignification in carrot taproots. Our results provide a valuable database for more studies, which may focus on the regulation of root lignification via controlling cytokinin levels in carrot taproots.


Asunto(s)
Citocininas/química , Daucus carota/química , Perfilación de la Expresión Génica/métodos , Lignina/síntesis química
7.
Neural Regen Res ; 20(1): 265-276, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767491

RESUMEN

JOURNAL/nrgr/04.03/01300535-202501000-00034/figure1/v/2024-05-14T021156Z/r/image-tiff Certain amino acids changes in the human Na+/K+-ATPase pump, ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1), cause Charcot-Marie-Tooth disease type 2 (CMT2) disease and refractory seizures. To develop in vivo models to study the role of Na+/K+-ATPase in these diseases, we modified the Drosophila gene homolog, Atpα, to mimic the human ATP1A1 gene mutations that cause CMT2. Mutations located within the helical linker region of human ATP1A1 (I592T, A597T, P600T, and D601F) were simultaneously introduced into endogenous DrosophilaAtpα by CRISPR/Cas9-mediated genome editing, generating the AtpαTTTF model. In addition, the same strategy was used to generate the corresponding single point mutations in flies (AtpαI571T, AtpαA576T, AtpαP579T, and AtpαD580F). Moreover, a deletion mutation (Atpαmut) that causes premature termination of translation was generated as a positive control. Of these alleles, we found two that could be maintained as homozygotes (AtpαI571T and AtpαP579T). Three alleles (AtpαA576T, AtpαP579 and AtpαD580F) can form heterozygotes with the Atpαmut allele. We found that the Atpα allele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila. Flies heterozygous for AtpαTTTF mutations have motor performance defects, a reduced lifespan, seizures, and an abnormal neuronal morphology. These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA