Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 9(21): 17757-17768, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28481085

RESUMEN

To improve the therapeutic index of cisplatin (CDDP), we present here a new paradigm of drug-induced self-assembly by harnessing phosphato-platinum complexation. Specifically, we show that a phosphato-platinum cross-linked micelle (PpY/Pt) can be generated by using a block copolymer methoxy-poly(ethylene glycol)-block-poly(l-phosphotyrosine) (mPEG-b-PpY). Coating of PpY/Pt with a R9-iRGD peptide by simple mixing affords a targeting micelle with near neutral-charged surface (iPpY/Pt). The micelles feature in well-controlled sizes below 50 nm and high stability under physiological conditions, and can withstand various environmental stresses. Importantly, the micelles demonstrate on-demand drug release profiles in response to pathological cues such as high ATP concentration and acidic pH. In vitro, the micelles are efficiently internalized and almost equally potent compared to CDDP. Moreover, iPpY/Pt induce greater cytotoxicity than PpY/Pt in a 3D tumor spheroid model likely due to its deeper tumor penetration. In vivo, the micelles exhibit prolonged circulation half-lives, enhanced tumor accumulation, excellent tumor growth inhibition in a xenograft HeLa model and an orthotropic mammary 4T1 model, and improved safety profiles evidenced by the reduced nephrotoxicity. Together, this work demonstrates for the first time that phosphato-platinum complexation can be exploited for effective delivery of CDDP, and suggests a paradigm shift of constructing nanosystems for other anticancer metallodrugs.


Asunto(s)
Platino (Metal)/química , Antineoplásicos , Cisplatino , Sistemas de Liberación de Medicamentos , Micelas , Polietilenglicoles , Polímeros
2.
Artículo en Zh | MEDLINE | ID: mdl-21735789

RESUMEN

OBJECTIVE: To compare the effect between vascularization osteogenesis and membrane guided osteogenesis in the bone repair by the tissue engineered bone with pedicled fascial flap packing autologous red bone marrow (ARBM), so as to provide a reference for the bone defect repair in clinic. METHODS: The tissue engineered bone was constructed with ARBM and the osteoinductive absorbing recombinant human materials with recombinant human bone morphogenetic protein 2. Sixty New Zealand rabbits (aged 4-5 months, weighing 2.0-2.5 kg) were randomly divided into group A (n = 16), group B (n = 22), and group C (n = 22). The complete periosteum defect model of 1.5 cm in length was prepared in right ulnar bone, then the tissue engineered bone was implanted in the bone defect area in group A, the tissue engineered bone with free fascial flap in group B, and the tissue engineered bone with pedicled fascial flap in group C. At 4, 8, 12, and 16 weeks, the tissue of bone defect area was harvested from 4 rabbits of each group for the general, histological, and immunohistochemical staining observations; at 8, 12, and 16 weeks, 2 rabbits of groups B and C, respectively were selected to perform ink perfusion experiment by axillary artery. RESULTS: The general observation showed that the periosteum-like tissues formed in the fascial flap of groups B and C, chondroid tissues formed in group B, new bone formed in group C, and the fibrous and connective tissues in group A at 4 and 8 weeks; a few porosis was seen in group A, more new bone in group B, and bone stump formation in group C at 12 and 16 weeks. Histological observation showed that there were few new blood vessels and new bone trabeculae in groups A and B, while there were large amounts of new blood vessels and mature bone trabeculae in group C at 4 and 8 weeks. There were a few new blood vessels and new bone trabeculae in group A; more blood vessels, significantly increased mature trabeculae, and the medullary cavity formation in group B; and gradually decreased blood vessels, the mature bone structure formation, and the re-opened medullary cavity in group C at 12 and 16 weeks. The immunohistochemical staining observation showed that the levels of CD105, CD34, and factor VIII were higher in group C than in groups A and B at different time points. The bone morphometry analysis showed that the trabecular volume increased gradually with time in 3 groups after operation; the trabecular volume in group C was significantly more than those in groups A and B at different time points (P < 0.05); and there was significant difference between groups A and B (P < 0.05) except the volume at 4 weeks (P > 0.05). The vascular image analysis showed that the vascular regenerative area ratio in group C was significantly higher than those in groups A and B at different time points (P < 0.05). The ink perfusion experiment showed that the osteogenic zone had sparse ink area with no obvious change in group B, while the osteogenic zone had more intensive ink area and reached the peak at 8 weeks, then decreased in group C. CONCLUSION: The tissue engineered bone with pedicled fascial flap packing ARBM has the vascularization osteogenesis effect at early stage, but the effect disappears at late stage gradually when the membrane guided osteogenesis is main.


Asunto(s)
Trasplante de Médula Ósea , Fascia/trasplante , Neovascularización Fisiológica , Osteogénesis , Ingeniería de Tejidos/métodos , Animales , Médula Ósea , Regeneración Ósea , Sustitutos de Huesos , Células Cultivadas , Femenino , Conejos , Colgajos Quirúrgicos , Andamios del Tejido , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA