Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(1): 371-379, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36441573

RESUMEN

Antibacterial amphiphiles normally kill bacteria by destroying the bacterial membrane. Whether and how antibacterial amphiphiles alter normal cell membrane and lead to subsequent effects on pathogen invasion into cells have been scarcely promulgated. Herein, by taking four antibacterial gemini amphiphiles with different spacer groups to modulate cell-mimic phospholipid giant unilamellar vesicles (GUVs), bacteria adhesion on the modified GUVs surface and bacteria engulfment process by the GUVs are clearly captured by confocal laser scanning microscopy. Further characterization shows that the enhanced cationic surface charge of GUVs by the amphiphiles determines the bacteria adhesion amount, while the involvement of amphiphile in GUVs results in looser molecular arrangement and concomitant higher fluidity in the bilayer membranes, facilitating the bacteria intruding into GUVs. This study sheds new light on the effect of amphiphiles on membrane bilayer and the concurrent effect on pathogen invasion into cell mimics and broadens the nonprotein-mediated endocytosis pathway for live bacteria.


Asunto(s)
Adhesión Bacteriana , Fluidez de la Membrana , Fosfolípidos , Liposomas Unilamelares , Bacterias/metabolismo , Antibacterianos/farmacología
2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 371-374, 2024 Apr 18.
Artículo en Zh | MEDLINE | ID: mdl-38595261

RESUMEN

With the development of modern medical standards, autoimmune diseases and their associated successive osteoporosis have received increasing attention in recent years. Patients with autoimmune diseases, due to the characteristics of the disease and the prolonged use of glucocorticoid hormone therapy, may affect the bone formation and bone absorption of the patient, followed by severe successive osteoporosis, thereby increasing the risk of osteoporotic vertebral fractures. Vertebral compression fractures of the spine are common fracture types in patients with osteoporotic fractures. Osteoporosis is a common complication after glucocorticoid therapy in patients with autoimmune diseases. Percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) are minimally invasive operation and are commonly used surgical methods for the treatment of osteoporotic vertebral compression fractures. However, due to the operation of spinal puncture during the operation, there are serious surgical risks such as bone cement leakage, spinal epidural hemorrhage, subdural hemorrhage, and subarachnoid hemorrhage in both PVP and PKP. As a result, it is necessary to evaluate the patient' s body before surgery carefully, especially in the case of blood coagulation. This article reports a case of autoimmune disease patient admitted to Peking University People' s Hospital due to lumbar 4 vertebral compression fracture combined with Sjögren' s syndrome. The patient' s preoperative examination showed that the activated partial thromboplastin time (APTT) was significantly prolonged. After completing the APTT extended screening experiment and lupus anticoagulant factor testing, the multi-disciplinary team (MDT) of Peking University People' s Hospital jointly discussed the conclusion that the patient' s test results were caused by an abnormal self-immunity anti-copulant lupus (LAC). Based on the results of the laboratory examination, the patient was considered to be diagnosed with combined antiphospholipid syndrome (APS). For such patients, compared with the patient' s tendency to bleed, we should pay more attention to the risk of high blood clotting in the lower limbs of the patient, pulmonary clots and so on. With timely anti-coagulation treatment, the patient safely passed the peripheral period and was successfully discharged from the hospital. Therefore, for patients with autoimmune diseases with prolonged APTT in the perioperative period, doctors need to carefully identify the actual cause and carry out targeted treatment in order to minimize the risk of surgical and perioperative complications and bring satisfactory treatment results to the patients.


Asunto(s)
Enfermedades Autoinmunes , Fracturas por Compresión , Cifoplastia , Osteoporosis , Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Vertebroplastia , Humanos , Fracturas de la Columna Vertebral/cirugía , Fracturas de la Columna Vertebral/etiología , Fracturas por Compresión/cirugía , Vertebroplastia/efectos adversos , Vertebroplastia/métodos , Tiempo de Tromboplastina Parcial , Glucocorticoides , Tiempo de Protrombina , Cifoplastia/efectos adversos , Cifoplastia/métodos , Osteoporosis/complicaciones , Fracturas Osteoporóticas/cirugía , Fracturas Osteoporóticas/etiología , Cementos para Huesos , Resultado del Tratamiento , Estudios Retrospectivos
3.
Biomacromolecules ; 24(3): 1377-1387, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36799412

RESUMEN

The abundant and low-cost features of lignin in combination with its natural activities make it a fascinating biopolymer for valorization, especially, in agriculture as an active plant growth regulator. However, the structure-activity relationship of lignin in regulating plant growth and metabolism remains unclear. In this work, rice-straw-based low-molecular-weight (LWM, 1860 Da) and high-molecular-weight (HMW, 6840 Da) alkali-oxygen lignins are structurally and comparatively investigated to understand their effects on the growth and metabolism of maize seedlings. The results indicate that LMW lignin at 150 mg·L-1 displays early growth stimulation in maize. Under the optimal concentration of LMW lignin (25 mg·L-1), the growth of maize shoot is ∼83% higher than that of the control one. Furthermore, LMW lignin also has a positive effect on the upregulation of photosynthetic pigment, carbohydrate, and protein synthesis. In contrast, HMW lignin shows an overall inhibitory effect on the above-mentioned biochemical parameters. Based on the structural characterization, LMW lignin contains a higher syringyl/guaiacyl ratio (0.78) and carboxyl content (1.64 mmol·g-1) than HMW lignin (0.43 and 1.27 mmol·g-1, respectively), which demonstrates that methoxyl and carboxyl content of lignin may play a decisive role in seedling growth.


Asunto(s)
Lignina , Oryza , Lignina/química , Zea mays , Oryza/química , Plantones , Peso Molecular , Álcalis/química , Oxígeno
4.
BMC Oral Health ; 23(1): 980, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066540

RESUMEN

BACKGROUND: Apical periodontitis directly affects the stress state of the affected tooth owing to the destruction of the periapical bone. Understanding the mechanical of periapical bone defects/tooth is clinically meaningful. In this study, we evaluate the effect of periapical bone defects on the stress distribution in teeth with periapical periodontitis using finite element analysis. METHODS: Finite element models of normal mandibular second premolars and those with periapical bone defects (spherical defects with diameters of 5, 10, 15, and 20 mm) were created using a digital model design software. The edges of the mandible were fixed and the masticatory cycle was simplified as oblique loading (a 400 N force loaded obliquely at 45° to the long axis of the tooth body) to simulate the tooth stress state in occlusion and analyze the von Mises stress distribution and tooth displacement distribution in each model. RESULTS: Overall analysis of the models: Compared to that in the normal model, the maximum von Mises stresses in all the different periapical bone defect size models were slightly lower. In contrast, the maximum tooth displacement in the periapical bone defect model increased as the size of the periapical bone defect increased (2.11-120.1% of increase). Internal analysis of tooth: As the size of the periapical bone defect increased, the maximum von Mises stress in the coronal cervix of the tooth gradually increased (2.23-37.22% of increase). while the von Mises stress in the root apical region of the tooth showed a decreasing trend (41.48-99.70% of decrease). The maximum tooth displacement in all parts of the tooth showed an increasing trend as the size of the periapical bone defect increased. CONCLUSIONS: The presence of periapical bone defects was found to significantly affect the biomechanical response of the tooth, the effects of which became more pronounced as the size of the bone defect increased.


Asunto(s)
Periodontitis Periapical , Programas Informáticos , Humanos , Análisis de Elementos Finitos , Estrés Mecánico , Diente Premolar , Análisis del Estrés Dental
5.
BMC Oral Health ; 23(1): 973, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057755

RESUMEN

AIM: To evaluate the effects of root canal treatment (RCT) and post-crown restoration on stress distribution in teeth with periapical bone defects using finite element analysis. METHODOLOGY: Finite element models of mandibular second premolars and those with periapical bone defects (spherical defects with diameters of 5, 10, 15, and 20 mm) were created using digital model design software. The corresponding RCT and post-crown restoration models were constructed based on the different sizes of periapical bone defect models. The von Mises stress and tooth displacement distributions were comprehensively analyzed in each model. RESULTS: Overall analysis of the models: RCT significantly increased the maximum von Mises stresses in teeth with periapical bone defects, while post-crown restoration greatly reduced the maximum von Mises stresses. RCT and post-crown restoration slightly reduced tooth displacement in the affected tooth. Internal analysis of tooth: RCT dramatically increased the maximum von Mises stress in all regions of the tooth, with the most pronounced increase in the coronal surface region. The post-crown restoration balances the internal stresses of the tooth and is most effective in periapical bone defect - 20-mm model. RCT and post-crown restoration slightly reduced the tooth displacement in all regions of the affected tooth. CONCLUSIONS: Root canal treatment seemed not to improve the biomechanical state of teeth with periapical bone defects. In contrast, post-crown restoration might effectively balance the stress concentrations caused by periapical bone defects, particularly extensive ones.


Asunto(s)
Periodontitis Periapical , Corona del Diente , Humanos , Análisis de Elementos Finitos , Cavidad Pulpar , Coronas , Periodontitis Periapical/terapia
6.
Angew Chem Int Ed Engl ; 61(6): e202110938, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34791775

RESUMEN

Microbial infections have become a great threat to human health and one of the main risks arises from direct contact with the surfaces contaminated by pathogenic microbes. Herein, a kind of hexagonal column interpenetrated spheres (HCISs) are fabricated by non-covalent assembly of plant gallic acid with quaternary ammonium surfactants. Different from one-time burst release of conventional antimicrobial agents, the HCIS acts like a "antimicrobial molecular bank" and releases the antimicrobial ingredients in a multistage way, leading to long-lasting antimicrobial performance. Taking advantage of strong hydrophobicity and adhesion, HCISs are applicable to various substrates and endowed with anti-water washing property, thus showing high in vitro antimicrobial efficiency (>99 %) even after being used for 10 cycles. Meanwhile, HCISs exhibit broad-spectrum antimicrobial activity against bacteria and fungi, and have good biocompatibility with mammalian cells. Such a low-cost and portable long-lasting antimicrobial agent meets the growing anti-infection demand in public spaces.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Materiales Biocompatibles/farmacología , Polifenoles/farmacología , Tensoactivos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Candida albicans/efectos de los fármacos , Cationes/química , Cationes/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Tamaño de la Partícula , Polifenoles/química , Staphylococcus aureus/efectos de los fármacos , Tensoactivos/química
7.
Angew Chem Int Ed Engl ; 60(11): 5759-5765, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33247502

RESUMEN

Cell surface engineering with functional polymers is an effective strategy to modulate cell activity. Here, a bio-palladium catalyzed polymerization strategy was developed for in situ synthesis of conjugated polymers on living cell surfaces. Through Sonagashira polymerization, photoactive polyphenyleneethynylene (PPE) is synthesized on the cell surface via cell-generated bio-Pd catalyst. The in situ formed PPE is identified by excellent light-harvest capacity and blue fluorescence on the surfaces of E. coli and C. pyrenoidosa. Besides imaging microbes for tracing the polymerization process, PPE also exhibits enhanced antibacterial activity against E. coli. It can also augment the ATP synthesis of C. pyrenoidosa through enlarging the light absorption and accelerating the cyclic electron transport of the algae. With this bio-metal catalyzed polymerization method, functional polymers can be synthesized in situ on the living cell surface.


Asunto(s)
Alquinos/síntesis química , Éteres/síntesis química , Paladio/química , Polímeros/síntesis química , Alquinos/química , Alquinos/metabolismo , Catálisis , Escherichia coli/química , Escherichia coli/citología , Escherichia coli/metabolismo , Éteres/química , Éteres/metabolismo , Eucariontes/química , Eucariontes/citología , Eucariontes/metabolismo , Paladio/metabolismo , Procesos Fotoquímicos , Polimerizacion , Polímeros/química , Polímeros/metabolismo , Propiedades de Superficie
8.
Soft Matter ; 15(46): 9458-9467, 2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31742300

RESUMEN

Peptide surfactants have shown many potential applications in biology and medicine; however, the mechanism of their interactions with biomembranes is still unclear. This work has studied the interactions of cationic peptide gemini surfactants based on lysine spacers (12-(Lys)n-12, n = 2, 4, and 6) with model biological membranes, which are represented by the vesicles separately formed by zwitterionic unsaturated phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), anionic unsaturated phospholipid 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG, sodium salt) and the DOPC/DOPG (1 : 1) mixture. The experiment results show that the presence of negatively charged DOPG slightly affects the interaction manners of 12-(Lys)n-12 with the vesicles, while the interaction of 12-(Lys)2-12 with the phospholipid vesicles is significantly different from that of 12-(Lys)4-12 and 12-(Lys)6-12 with the vesicles. The binding strength decreases in the order of 12-(Lys)4-12 > 12-(Lys)6-12 > 12-(Lys)2-12. The 12-(Lys)4-12 surfactant solubilizes the DOPC vesicles, and makes the DOPC molecules join the surfactant stiff fibers and changes them into long and flexible wormlike micelles, while the 12-(Lys)6-12 and 12-(Lys)2-12 aggregates are disassembled by the DOPC vesicles, and the surfactant molecules join the DOPC vesicles and convert the unilamellar vesicles into multilamellar vesicles. This work should be helpful in understanding the interaction of peptide surfactants with phospholipid membranes.


Asunto(s)
Liposomas/química , Lisina/química , Fosfolípidos/química , Tensoactivos/química , Péptidos/química , Unión Proteica , Conformación Proteica
9.
Macromol Rapid Commun ; 39(7): e1700706, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29405489

RESUMEN

Main chain donor and side chain acceptor (D-s-A) copolymers are an important branch of the D-A copolymer family. However, the development of D-s-A copolymers significantly falls behind the alternative D-A copolymers, especially for organic solar cells, because a breakthrough in device performance is not yet obtained with a reported power conversion efficiency (PCE) of 2%-4%. Herein, a newly developed D-s-A copolymer PDRCNBDT, bearing 2-(1, 1-dicyanomethylene) rhodanine pendant group as the donor material, delivers a high PCE of 5.3% for nonfullerene solar cells. To the best of our knowledge, this is the best value reported for D-s-A copolymers to date. The improved PCE is observed to be associated with a very small energy loss (Eloss ) of 0.57 eV, accompanied by a high open-circuit voltage (Voc ) of 1.015 eV. It is important to note that this efficient D-s-A copolymer is employed in organic solar cells (OSCs), free of additive and annealing treatments.


Asunto(s)
Electricidad , Polímeros/química , Energía Solar , Polímeros/síntesis química
10.
Nanomedicine ; 12(3): 623-632, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26656634

RESUMEN

Ultraviolet (UV) radiation has deleterious effects on living organisms, and functions as a tumor initiator and promoter. Multiple natural compounds, like quercetin, have been shown the protective effects on UV-induced damage. However, quercetin is extremely hydrophobic and limited by its poor percutaneous permeation and skin deposition. Here, we show that quercetin-loaded PLGA-TPGS nanoparticles could overcome low hydrophilicity of quercetin and improve its anti-UVB effect. Quercetin-loaded NPs can significantly block UVB irradiation induced COX-2 up-expression and NF-kB activation in Hacat cell line. Moreover, PLGA-TPGS NPs could efficiently get through epidermis and reach dermis. Treatment of mice with quercetin-loaded NPs also attenuates UVB irradiation-associated macroscopic and histopathological changes in mice skin. These results demonstrated that copolymer PLGA-TPGS could be used as drug nanocarriers against skin damage and disease. The findings provide an external use of PLGA-TPGS nanocarriers for application in the treatment of skin diseases. FROM THE CLINICAL EDITOR: Skin is the largest organ in the body and is subjected to ultraviolet (UV) radiation damage daily from the sun. Excessive exposure has been linked to the development of skin cancer. Hence, topically applied agents can play a major role in skin protection. In this article, the authors developed quercetin-loaded PLGA-TPGS nanoparticles and showed their anti-UVB effect.


Asunto(s)
Antioxidantes/uso terapéutico , Ácido Láctico/química , Ácido Poliglicólico/química , Quercetina/uso terapéutico , Enfermedades de la Piel/tratamiento farmacológico , Piel/efectos de los fármacos , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Vitamina E/química , Animales , Antioxidantes/administración & dosificación , Línea Celular , Portadores de Fármacos/química , Femenino , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Queratinocitos/efectos de la radiación , Ratones , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Quercetina/administración & dosificación , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Traumatismos Experimentales por Radiación/etiología , Traumatismos Experimentales por Radiación/patología , Piel/patología , Enfermedades de la Piel/etiología , Enfermedades de la Piel/patología
11.
J Chem Phys ; 142(8): 084901, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25725751

RESUMEN

Polymer translocation through nanopore has potential technological applications for DNA sequencing, where one challenge problem is to slow down translocation speed. Inspired by experimental findings that kinked nanopores exhibit a large reduction in translocation velocity compared with their straight counterparts, we investigate the dynamics of polymer translocation through kinked nanopores in two dimensions under an applied external field. With increasing the tortuosity of an array of nanopores, our analytical results show that the translocation probability decreases. Langevin dynamics simulation results support this prediction and further indicate that with increasing the tortuosity, translocation time shows a slow increase followed by a rapid increase after a critical tortuosity. This behavior demonstrates that kinked nanopores can effectively reduce translocation speed. These results are interpreted by the roles of the tortuosity for decreasing the effective nanopore diameter, increasing effective nanopore length, and greatly increasing the DNA-pore friction.


Asunto(s)
Nanoporos , Polímeros/química , Simulación por Computador , ADN/química , Fricción , Modelos Químicos , Probabilidad , Factores de Tiempo
12.
Angew Chem Int Ed Engl ; 53(2): 424-8, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24273033

RESUMEN

The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color-encoded IPC fibers were also obtained based on the co-assembly of DNA, histone proteins, and blue-, green-, or red- (RGB-) emissive CCPs by tuning the fluorescence resonance energy-transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP-coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi-colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering.


Asunto(s)
ADN/química , Histonas/química , Polímeros/química , Técnicas Biosensibles/métodos , Cationes , Electrólitos/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Polímeros/síntesis química , Solubilidad , Electricidad Estática , Ingeniería de Tejidos/métodos
13.
Stem Cell Res Ther ; 15(1): 84, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500206

RESUMEN

BACKGROUND: Chemotherapy-induced alopecia (CIA) is a distressing adverse effect of chemotherapy, with an estimated incidence of 65% and limited treatment options. Cyclophosphamide (CYP) is a common alopecia-inducing chemotherapy agent. Human dental pulp stem cells (DPSCs) secrete several paracrine factors that up-regulate hair growth. Conditioned medium (CM) collected from DPSCs (DPSC-CM) promotes hair growth; culturing mesenchymal stem cells under hypoxic conditions can enhance this effect. METHODS: The effect of DPSC-CM cultured under normoxic (N-) and hypoxic (H-) conditions against CYP-mediated cytotoxicity in keratinocytes was examined using cell viability assay, lactate dehydrogenase (LDH) cytotoxicity assay, and apoptosis detection. The damage-response pathway was determined in a well-established CIA mouse model by analyzing macroscopic effects, histology, and apoptosis. Reverse transcription-quantitative PCR and Caspase-3/7 activity assay were used to investigate the impact of DPSC-CM on the molecular damage-response pathways in CYP-treated mice. The effect of post-CIA DPSC-CM application on post-CIA hair regrowth was analyzed by macroscopic effects and microstructure observation of the hair surface. Furthermore, to investigate the safety of DPSC-CM as a viable treatment option, the effect of DPSC-CM on carcinoma cell lines was examined by cell viability assay and a subcutaneous tumor model. RESULTS: In the cell viability assay, DPSC-CM was observed to increase the number of keratinocytes over varying CYP concentrations. Furthermore, it reduced the LDH activity level and suppressed apoptosis in CYP-treated keratinocytes. DPSC-CM exhibited the cytoprotective role in vivo via the dystrophic anagen damage-response pathway. While both N-CM and H-CM downregulated the Caspase-3/7 activity level, H-CM downregulated Caspase-3 mRNA expression. The proportion of post-CIA H-CM-treated mice with > 90% normal hair was nearly twice that of vehicle- or N-CM-treated mice between days 50 and 59 post-depilation, suggesting that post-CIA H-CM application may accelerate hair regrowth and improve hair quality. Furthermore, DPSC-CM suppressed proliferation in vitro in certain carcinoma cell lines and did not promote the squamous cell carcinoma (SCC-VII) tumor growth rate in mice. CONCLUSIONS: The potentiality of DPSC-CM and H-CM as a promising cytoprotective agent and hair regrowth stimulant, respectively, for CIA needs in-depth exploration.


Asunto(s)
Antineoplásicos , Carcinoma , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Medios de Cultivo Condicionados/farmacología , Caspasa 3/genética , Pulpa Dental , Alopecia/inducido químicamente , Alopecia/terapia , Ciclofosfamida/efectos adversos , Antineoplásicos/efectos adversos , Carcinoma/inducido químicamente
14.
Adv Healthc Mater ; 13(9): e2303293, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38060135

RESUMEN

Invasion of bacteria and continuous oozing of exudate are significant causes of interference with the healing of infected wounds. Therefore, an exudate-induced gelatinizable and near-infrared (NIR)-responsive nanofiber membrane composed of polyvinyl alcohol (PVA), carboxymethyl chitosan (CMC), and Fe-doped phosphomolybdic acid (Fe-PMA) with exceptional exudate absorption capacity and potent bactericidal efficacy is developed and denoted as the PVA-FP-CMC membrane. After absorbing exudate, the fiber membrane can transform into a hydrogel membrane, forming coordination bonds between the Fe-PMA and CMC. The unique exudate-induced gelation process imparts the membrane with high exudate absorption and retention capability, and the formed hydrogel also traps the bacteria that thrive in the exudate. Moreover, it is discovered for the first time that the Fe-PMA exhibits an enhanced photothermal conversion capability and photocatalytic activity compared to the PMA. Therefore, the presence of Fe-PMA provides the membrane with a photothermal and photodynamic therapeutic effect for killing bacteria. The PVA-FP-CMC membrane is proven with a liquid absorption ratio of 520.7%, a light-heat conversion efficiency of 41.9%, high-level generation of hydroxyl radical (•OH) and singlet oxygen (1O2), and a bacterial killing ratio of 100% for S. aureus and 99.6% for E. coli. The treatment of infected wounds on the backs of rats further confirms the promotion of wound healing by the PVA-FP-CMC membrane with NIR irradiation. Overall, this novel functional dressing for the synergistic management of bacteria-infected wounds presents a promising therapeutic strategy for tissue repair and regeneration.


Asunto(s)
Nanofibras , Infección de Heridas , Ratas , Animales , Nanofibras/uso terapéutico , Nanofibras/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Alcohol Polivinílico/farmacología , Alcohol Polivinílico/química , Infección de Heridas/tratamiento farmacológico , Hidrogeles/química , Exudados y Transudados
15.
Talanta ; 274: 126007, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583331

RESUMEN

Hypoxanthine (Hx), produced by adenosine triphosphate (ATP) metabolism, is a valuable indicator that determines the quality and degradation status of meat products and is also an important biochemical marker to certain diseases such as gout. The rapid emergence of paper-based enzyme biosensors has already revolutionized its on-site determination. But it is still limited by the complex patterning and fabrication, unstable enzyme and uneven coloration. This work aims to develop an eco-friendly method to construct engineered paper microfluidic, which seeks to produce reaction and non-reaction zones without any patterning procedure. Chito-oligosaccharide (COS), derived from shrimp shells, was used to modify nitrocellulose membranes and immobilize xanthine oxidase (XOD) and chromogenic agent of nitro blue tetrazolium chloride (NBT). After modification, micro fluids could converge into the modification area and Hx could be detected by XOD-catalyzed conversion. Due to the positively charged cationic basic properties of COS, the enzyme storage stability and the color homogeneity could be greatly strengthened through the electrostatic attraction between COS and XOD and formazan product. The detection limit (LOD) is 2.30 µM; the linear range is 0.05-0.35 mM; the complete test time can be as short as 5 min. The COS-based biosensor shows high specificity and can be used directly for Hx in complex samples such as fish and shrimp samples, and different broths. This biosensor is eco-friendly, nontechnical, economical and therefore a compelling platform for on-site or home-based detection of food freshness.


Asunto(s)
Técnicas Biosensibles , Colodión , Hipoxantina , Oligosacáridos , Xantina Oxidasa , Animales , Oligosacáridos/química , Oligosacáridos/análisis , Técnicas Biosensibles/métodos , Hipoxantina/análisis , Hipoxantina/química , Colodión/química , Xantina Oxidasa/química , Xantina Oxidasa/metabolismo , Peces , Quitina/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Tecnología Química Verde/métodos , Propiedades de Superficie , Límite de Detección
16.
J Adhes Dent ; 26(1): 147-170, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38785223

RESUMEN

PURPOSE: To systematically review in-vitro studies that evaluated the influence of erbium laser pretreatment on dentin shear bond strength (SBS) and bond failure modes. MATERIALS AND METHODS: Electronic databases (PubMed, Cochrane Central, Embase, and Web of Science) were searched. Only in-vitro studies involving erbium laser irradiation of the dentin surface and SBS testing of the bonded resin block were included. The three common modes of bond failure (1. adhesive, 2. cohesive, and 3. mixed) were observed and analyzed. The network meta-analysis (NMA) was performed by Stata 15.0 software, the risk of bias was evaluated, and the certainty of the evidence was assessed by the Confidence in Network Meta-analysis (CINeMA). RESULTS: Forty studies with nine pretreatments (1. blank group: BL; 2. phosphoric acid etch-and-rinse: ER; 3. self-etch adhesive: SE; 4. Er:YAG laser: EL; 5. Er,Cr:YSGG laser: ECL; 6. ER+EL; 7. ER+ECL; 8. SE+EL; 9. SE+ECL) were included in this analysis. The NMA of SBS showed that ER+EL [SMD = 0.32, 95% CI (0.11, 0.98)] had the highest SBS next to ER, especially when using one of the 3M ESPE adhesives, followed by EL, ECL, SE and SE+EL. The Ivoclar Vivadent adhesives significantly increased the SBS of the ECL [SMD = 0.37, 95% CI (0.16,0.90)] and was higher than ER+EL [SMD = 0.25,95% CI (0.07,0.85)]. Finally, the surface under the cumulative ranking curve (SUCRA) value indicated that ER+EL (SUCRA = 71.0%) and EL (SUCRA = 62.9%) were the best treatments for enhancing dentin SBS besides ER. ER+EL (SUCRA = 85.3%), ER (SUCRA = 83.7%) and ER (SUCRA = 84.3%) had the highest probability of occurring in adhesive, cohesive and mixed failure modes, respectively. CONCLUSION: Er:YAG and Er,Cr:YSGG lasers improved dentin SBS compared to the blank group, especially when the acid etch-and-rinse pretreatment was combined with Er:YAG laser. Shear bond strength and failure mode do not appear to be directly related.


Asunto(s)
Recubrimiento Dental Adhesivo , Dentina , Láseres de Estado Sólido , Resistencia al Corte , Recubrimiento Dental Adhesivo/métodos , Láseres de Estado Sólido/uso terapéutico , Humanos , Metaanálisis en Red , Recubrimientos Dentinarios/química , Grabado Ácido Dental , Análisis del Estrés Dental
17.
ACS Nano ; 18(5): 4329-4342, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38261787

RESUMEN

Lignin, as an abundant aromatic biopolymer in plants, has great potential for medical applications due to its active sites, antioxidant activity, low biotoxicity, and good biocompatibility. In this work, a simple and ecofriendly approach for lignin fractionation and modification was developed to improve the antitumor activity of lignin. The lignin fraction KL-3 obtained by the lignin gradient acid precipitation at pH = 9-13 showed good cytotoxicity. Furthermore, the cell-feeding lignin after additional structural modifications such as demethylation (DKL-3), sulfonation (SL-3), and demethylsulfonation (DSKL-3) could exhibit higher glutathione responsiveness in the tumor microenvironment, resulting in reactive oxygen species accumulation and mitochondrial damage and eventually leading to apoptosis in HepG2 cells with minimal damage to normal cells. The IC50 values for KL-3, SL-3, and DSKL-3 were 0.71, 0.57, and 0.41 mg/mL, respectively, which were superior to those of other biomass extractives or unmodified lignin. Importantly, in vivo experiments conducted in nude mouse models demonstrated good biosafety and effective tumor destruction. This work provides a promising example of constructing carrier-free functionalized lignin antitumor materials with different structures for inhibiting the growth of human hepatocellular carcinoma (HepG2) cells, which is expected to improve cancer therapy outcomes.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Poliuretanos , Animales , Ratones , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Células Hep G2 , Lignina/farmacología , Microambiente Tumoral
18.
Biomolecules ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38672500

RESUMEN

Neuroma, a pathological response to peripheral nerve injury, refers to the abnormal growth of nerve tissue characterized by disorganized axonal proliferation. Commonly occurring after nerve injuries, surgeries, or amputations, this condition leads to the formation of painful nodular structures. Traditional treatment options include surgical excision and pharmacological management, aiming to alleviate symptoms. However, these approaches often offer temporary relief without addressing the underlying regenerative challenges, necessitating the exploration of advanced strategies such as tissue-engineered materials for more comprehensive and effective solutions. In this study, we discussed the etiology, molecular mechanisms, and histological morphology of traumatic neuromas after peripheral nerve injury. Subsequently, we summarized and analyzed current nonsurgical and surgical treatment options, along with their advantages and disadvantages. Additionally, we emphasized recent advancements in treating traumatic neuromas with tissue-engineered material strategies. By integrating biomaterials, growth factors, cell-based approaches, and electrical stimulation, tissue engineering offers a comprehensive solution surpassing mere symptomatic relief, striving for the structural and functional restoration of damaged nerves. In conclusion, the utilization of tissue-engineered materials has the potential to significantly reduce the risk of neuroma recurrence after surgical treatment.


Asunto(s)
Materiales Biocompatibles , Neuroma , Traumatismos de los Nervios Periféricos , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Humanos , Neuroma/terapia , Traumatismos de los Nervios Periféricos/terapia , Materiales Biocompatibles/uso terapéutico , Materiales Biocompatibles/química , Animales , Regeneración Nerviosa , Andamios del Tejido/química
19.
J Dent ; 146: 105026, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38679134

RESUMEN

OBJECTIVES: To analyze the role of oxidative stress (OS) biomarkers in peri­implant diseases using a systematic review and meta-analysis approach. DATE: The review incorporated cross-sectional studies, randomized controlled trials, and case-control trials to evaluate the differences in OS biomarkers of peri­implant disease. SOURCES: A comprehensive literature search was conducted in electronic databases such as PubMed, Scopus, Embase, Web of Science, and CNKI, and no restrictions were applied during the search process. STUDY SELECTION: A total of 452 studies were identified, of which 18 were eligible for inclusion. Risk of bias and sensitivity analysis were assessed using Egger's test and funnel plots. RESULTS: We found that the levels of glutathione peroxidase (GSH-Px) in the peri­implant sulcus fluid (PISF) of patients with peri­implant diseases were significantly reduced (SMD = -1.40; 95 % CI = 1.70, -1.11; p < 0.001), while the levels of total myeloperoxidase (MPO) and malondialdehyde (MDA) were significantly increased (SMD = 0.46; 95 % CI = 0.12, 0.80; p = 0.008; SMD = 0.28; 95 % CI = 0.01, 0.56; p = 0.043). However, there were no significant differences of MPO concentration (SMD = 0.38; 95 % CI = -0.39, 1.15; p = 0.331) and superoxide dismutase (SOD)(SMD = -0.43; 95 % CI = -1.94, 1.07; p = 0.572) in PISF between peri­implant disease group and control group. Similarly, salivary MPO did not show significant differences (SMD = 1.62; 95 % CI = -1.01, 4.24; p = 0.227). CONCLUSIONS: Our results supported that the level of local OS biomarkers was closely related to peri­implant diseases. GSH-Px, total MPO and MDA may be PISF biomarkers with good capability to monitor the development of peri­implant disease. CLINICAL SIGNIFICANCE: This study found significant differences in the levels of local OS biomarkers (GSH-Px, total MPO, and MDA) between patients with peri­implant diseases and healthy subjects, which may be ideal candidate biomarkers for predicting and diagnosing peri­implant diseases.


Asunto(s)
Biomarcadores , Implantes Dentales , Glutatión Peroxidasa , Malondialdehído , Estrés Oxidativo , Periimplantitis , Peroxidasa , Humanos , Biomarcadores/análisis , Peroxidasa/análisis , Malondialdehído/análisis , Malondialdehído/metabolismo , Periimplantitis/metabolismo , Glutatión Peroxidasa/análisis , Glutatión Peroxidasa/metabolismo , Líquido del Surco Gingival/química
20.
Adv Sci (Weinh) ; 11(13): e2307812, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38243646

RESUMEN

Zinc (Zn)-dysprosium (Dy) binary alloys are promising biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for bone fracture healing, due to the lack of Zn-Dy alloys with tailored proper bio-mechanical and osteointegration properties for bone regeneration. A Zn-5Dy alloy with high strength and ductility and a degradation rate aligned with the bone remodeling cycle is developed. Here, mechanical stability is further confirmed, proving that Zn-5Dy alloy can resist aging in the degradation process, thus meeting the mechanical requirements of fracture fixation. In vitro cellular experiments reveal that the Zn-5Dy alloy enhances osteogenesis and angiogenesis by elevating SIRT4-mediated mitochondrial function. In vivo Micro-CT, SEM-EDS, and immunohistochemistry analyses further indicate good biosafety, suitable biodegradation rate, and great osteointegration of Zn-5Dy alloy during bone healing, which also depends on the upregulation of SIRT4-mediated mitochondrial events. Overall, the study is the first to report a Zn-5Dy alloy that exerts remarkable osteointegration properties and has a strong potential to promote bone healing. Furthermore, the results highlight the importance of mitochondrial modulation and shall guide the future development of mitochondria-targeting materials in enhancing bone fracture healing.


Asunto(s)
Aleaciones , Osteogénesis , Implantes Absorbibles , Aleaciones/química , Aleaciones/farmacología , Ensayo de Materiales , Mitocondrias/efectos de los fármacos , Zinc/química , Disprosio/química , Disprosio/farmacología , Osteogénesis/efectos de los fármacos , Sirtuinas/efectos de los fármacos , Humanos , Fracturas Óseas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA