Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Res ; 251(Pt 2): 118677, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38508358

RESUMEN

Recent studies demonstrated that plastic degradation in Zophobas atratus superworms is related to the gut microbiota. To determine whether the biodegradation and gut-microbiota were influenced by ingested plastic polymerization types, foams of polypropylene (PP), polyurethane (PU) and ethylene vinyl acetate (EVA) were selected as representatives of polyolefins, polyester and copolymers, and the sole feedstock for superworms for 45 d. Both growth and survival rates of superworms were influenced by the type of plastic diet. Although the total consumptions of EVA- and PP-fed groups were similar at 29.03 ± 0.93 and 28.89 ± 1.14 mg/g-larva, which were both significantly higher than that of PU-fed groups (21.63 ± 2.18 mg/g-larva), the final survival rates of the EVA-fed group of 36.67 ± 10.41% exhibited significantly lower than that of the PP- and PU-fed groups of 76.67 ± 2.89% and 75.00 ± 7.07%, respectively, and even the starvation group of 51.67 ± 10.93%. The Illumina MiSeq results revealed similarities in the dominant gut bacterial communities between PU- and EVA-fed groups, with an increase in relative abundance of Lactococcus, but significant differences from the PP-fed groups, which had two predominant genera of unclassified Enterobacteriaceae and Enterococcus. Compared to bran-fed groups, changes in gut fungal communities were similar across all plastics-fed groups, with an increase in the dominant abundance of Rhodotorula. The abundance of Rhodotorula increased in the order of polyolefin, polyester, and copolymer. In summary, plastic ingestion, larval growth, and changes in gut bacterial and fungal community of superworms were all influenced by foam diets of different polymerization types, and especially influences on the gut microbiomes were different from each other.


Asunto(s)
Biodegradación Ambiental , Microbioma Gastrointestinal , Larva , Plásticos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Larva/microbiología , Bacterias/metabolismo , Bacterias/clasificación , Polimerizacion , Hongos/metabolismo , Micobioma
2.
Mol Biol Rep ; 50(5): 4435-4446, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37009956

RESUMEN

BACKGROUND: Scutellaria baicalensis Georgi is a famous traditional Chinese medicine, which is widely used in treating fever, upper respiratory tract infection and other diseases. Pharmacology study showed it can exhibit anti-bacterial, anti-inflammation and analgesic effects. In this study, we investigated the effect of baicalin on the odonto/osteogenic differentiation of inflammatory dental pulp stem cells (iDPSCs). METHODS AND RESULTS: iDPSCs were isolated from the inflamed pulps collected from pulpitis. The proliferation of iDPSCs was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,5-tetrazolium bromide (MTT) assay and flow cytometry. Alkaline phosphatase (ALP) activity assay, alizarin red staining, Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay were conducted to examine the differentiation potency along with the involvement of nuclear factor kappa B(NF-κB) and ß-catenin/Wnt signaling pathway. MTT assay and cell-cycle analysis demonstrated that baicalin had no influence on the proliferation of iDPSCs. ALP activity assay and alizarin red staining demonstrated that baicalin could obviously enhance ALP activity and calcified nodules formed in iDPSCs. RT-PCR and Western blot showed that the odonto/osteogenic markers were upregulated in baicalin-treated iDPSCs. Moreover, expression of cytoplastic phosphor-P65, nuclear P65, and ß-catenin in iDPSCs was significantly increased compared with DPSCs, but the expression in baicalin-treated iDPSCs was inhibited. In addition, 20 µM Baicalin could accelerate odonto/osteogenic differentiation of iDPSCs via inhibition of NF-κB and ß-catenin/Wnt signaling pathways. CONCLUSION: Baicalin can promote odonto/osteogenic differentiation of iDPSCs through inhibition of NF-κB and ß-catenin/Wnt pathways, thus providing direct evidence that baicalin may be effective in repairing pulp with early irreversible pulpitis.


Asunto(s)
FN-kappa B , Pulpitis , Humanos , FN-kappa B/metabolismo , Vía de Señalización Wnt , Osteogénesis , beta Catenina/metabolismo , Pulpa Dental , Células Madre/metabolismo , Diferenciación Celular , Células Cultivadas
3.
Bioorg Chem ; 140: 106841, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37683541

RESUMEN

Four monoterpenoid indole alkaloid dimers (MIADs), axidimins A-D (1-4), which possesses unprecedented apidosperma-aspidosperma-type skeletons, along with twelve known MIAs were isolated from Melodinus axillaris. Their structures were established by comprehensive analysis of the HRESIMS, NMR, ECD calculation and DP4 + analysis. A possible biosynthetic pathway for axidimins A-D was proposed. In vitro, axidimins C and D exhibited significant cytotoxicities against HCT116 cells with IC50 values of 5.3 µM and 3.9 µM, respectively. The results obtained from flow cytometry and Western blot analysis clearly demonstrated that axidimins C and D significantly induced a reverse G2/M phase arrest and apoptosis of HCT116 cells. The potential mechanism of axidimins C and D on HCT116 cells were thoroughly discussed through the utilization of network pharmacology and molecular docking research. Subsequently, the selected targets were validated using Western blot and CETSA analysis, confirming that axidimins C and D exert its cytotoxic effects through the activation of the p38 MAPK pathway, ultimately leading to HCT116 cells death. This study provides evidence indicating that axidimins C and D have the potential to induce cell cycle arrest and apoptosis in HCT116 cells by modulating the p38 MAPK signaling pathway. These findings offer a novel perspective for the development of anti-colorectal cancer drugs.


Asunto(s)
Apocynaceae , Alcaloides de Triptamina Secologanina , Humanos , Células HCT116 , Simulación del Acoplamiento Molecular , Apoptosis , Puntos de Control del Ciclo Celular , Alcaloides Indólicos , Mitosis , Monoterpenos/farmacología , Polímeros
4.
Molecules ; 24(23)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810169

RESUMEN

Bone defects caused by osteoporosis, bone malignant tumors, and trauma are very common, but there are many limiting factors in the clinical treatment of them. Bone tissue engineering is the most promising treatment and is considered to be the main strategy for bone defect repair. We prepared polydopamine-coated poly-(lactic-co-glycolic acid)/ß-tricalcium phosphate composite scaffolds via 3D printing, and a series of characterization and biocompatibility tests were carried out. The results show that the mechanical properties and pore-related parameters of the composite scaffolds are not affected by the coatings, and the hydrophilicities of the surface are obviously improved. Scanning electron microscopy and micro-computed tomography display the nanoscale microporous structure of the bio-materials. Biological tests demonstrate that this modified surface can promote cell adhesion and proliferation and improve osteogenesis through the increase of polydopamine (PDA) concentrations. Mouse cranial defect experiments are conducted to further verify the conclusion that scaffolds with a higher content of PDA coatings have a better effect on the formation of new bones. In the study, the objective of repairing critical-sized defects is achieved by simply adding PDA as coatings to obtain positive results, which can suggest that this modification method with PDA has great potential.


Asunto(s)
Regeneración Ósea , Fosfatos de Calcio/química , Materiales Biocompatibles Revestidos/química , Indoles/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Polímeros/química , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Adhesión Celular , Proliferación Celular , Ratones , Osteogénesis
5.
Int J Biol Macromol ; 276(Pt 1): 133610, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960268

RESUMEN

Poly (vinyl alcohol) (PVA), as an excellent degradable plastic feedstock, is limited by its diminishing stability in wet environment, low strength, thermal instability and nonopaque properties. In response to these concerns, a PVA/demethylated lignin-based supramolecular plastic (DPVA-HA-Fe-5) was designed and produced from PVA, demethylated lignin (DL), humic acid (HA) and Fe3+ ions via a simple casting method. As compared with pure PVA plastic, the tensile strength of DPVA-HA-Fe-5 were increased by 411 % to 410.61 MPa, and the breaking strain was increased by 149 % to 239.47 %. Notably, the hydrophobicity of DPVA-HA-Fe-5 was also significantly improved. Although in highly humid environment (stored in RH = 100 % for 10 days) or in alkaline organic solvent (stored in pyridine for 3 h), DPVA-HA-Fe-5 also showed excellent mechanical strengths of 302.9 and 222.99 MPa, respectively, which are equivalent or even superior to the most of commercial petroleum-based plastics. Moreover, the prepared plastics showed an outstanding UV resistance and shading performance, and about 98.3 % protection against ultraviolet radiation B rays and 90.7 % protection against visible light were obtained. In short, the introduction of lignin to improve the performance of PVA-based plastic is a feasible method, and it could facilitate the development of high-value utilization of lignin.


Asunto(s)
Lignina , Alcohol Polivinílico , Resistencia a la Tracción , Agua , Lignina/química , Alcohol Polivinílico/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Plásticos/química , Sustancias Húmicas/análisis , Metilación , Rayos Ultravioleta
6.
Chemosphere ; 352: 141499, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38373446

RESUMEN

Plastics biodegradation by insect larvae is considered as a new strategy for plastic wastes treatment. To uncover the biodegradation of a more complex chemical polymer of melamine formaldehyde (MF) by insect larvae, two worm species of yellow mealworm Tenebrio molitor and superworm Zophobas atratus were fed on MF foam as sole diet for 45 days with sole bran diet as control. Although the MF foam consumption by yellow mealworms of 0.38 mg/d/g-larvae was almost 40% higher than that by superworms of 0.28 mg/d/g-larvae, a similar decrease of survival rates in both species were obtained at about 58%, indicating the adverse effects on their growth. Depolymerization and biodegradation of MF foam occurred in both larval guts, but was more extensive in yellow mealworms. MF foam sole diet influenced gut bacterial and fungal microbiomes of both larvae species, which were assessed by Illumina MiSeq on day 45. Compared to the bran-fed group, both gut bacterial and fungal communities significantly changed in MF-fed groups, but differed in the two larvae species. The results demonstrated a strong association between the distinctive gut microbiome and MF foam degradation, such as unclassified Enterobacteriaceae, Hyphopichia and Issatchenkia. However, sole MF foam diet negatively influenced worms, like lower survival rates and gut abnormalities. In summary, MF foam could be degraded by both yellow mealworms and superworms, albeit with adverse effects. Gut microbes were strongly associated to MF foam degradation, especially the gut fungi.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Tenebrio , Triazinas , Animales , Tenebrio/metabolismo , Poliestirenos/metabolismo , Escarabajos/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Bacterias/metabolismo , Ingestión de Alimentos
7.
Int J Biol Macromol ; 273(Pt 1): 133032, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38862053

RESUMEN

Collagen's unique properties promise hemostatic potential, but its sponge form's stability and mechanics need improvement. In this study, we developed a series of homeostatic sponges by co-assembling collagen and curdlan at different ratios into hydrogels, followed by freeze-drying treatment. The incorporation of curdlan into collagen sponges has been found to significantly enhance the sponge's properties, including increased porosity, elevated water uptake, improved elasticity, and enhanced resistance to degradation. In vitro cytotoxicity and hemolysis assays have demonstrated the biocompatibility and nontoxicity of composite sponges. In mouse liver perforation and incision models, the composite sponges achieved rapid coagulation within 67 s and 75 s, respectively, outperforming gauze and gelatin sponge in reducing blood loss. Furthermore, composite sponges demonstrated superior wound healing potential in mice full-thickness skin defects model, with accelerated healing rates observed at days 3, 7, and 14 compared to the control group. Overall, collagen/curdlan composite sponge show promise for hemostasis and wound healing applications.


Asunto(s)
Colágeno , Hemostasis , Cicatrización de Heridas , beta-Glucanos , Animales , Cicatrización de Heridas/efectos de los fármacos , Colágeno/química , Colágeno/farmacología , beta-Glucanos/farmacología , beta-Glucanos/química , Ratones , Hemostasis/efectos de los fármacos , Piel/efectos de los fármacos , Piel/lesiones , Hidrogeles/química , Hidrogeles/farmacología , Hemólisis/efectos de los fármacos , Hemostáticos/farmacología , Hemostáticos/química , Porosidad , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Masculino
8.
J Control Release ; 368: 740-755, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499092

RESUMEN

Chronic wound treatment has emerged as a significant healthcare concern worldwide due to its substantial economic burden and the limited effectiveness of current treatments. Effective management of biofilm infections, regulation of excessive oxidative stress, and promotion of tissue regeneration are crucial for addressing chronic wounds. Hydrogel stands out as a promising candidate for chronic wound treatment. However, its clinical application is hindered by the difficulty in designing and fabricating easily and conveniently. To overcome these obstacles, we present a supermolecular G-quadruplex hydrogel with the desired multifunction via a dynamic covalent strategy and Hoogsteen-type hydrogen bonding. The G-quadruplex hydrogel is made from the self-assembly of guanosine, 2-formylphenyboronic acid, polyethylenimine, and potassium chloride, employing dynamic covalent strategy and Hoogsteen-type hydrogen bonding. In the acidic/oxidative microenvironment associated with bacterial infections, the hydrogel undergoes controlled degradation, releasing the polyethylenimine domain, which effectively eliminates bacteria. Furthermore, nanocomplexes comprising guanosine monophosphate and manganese sulfate are incorporated into the hydrogel skeleton, endowing it with the ability to scavenge reactive oxygen species and modulate macrophages. Additionally, the integration of basic fibroblast growth factor into the G-quadruplex skeleton through dynamic covalent bonds facilitates controlled tissue regeneration. In summary, the facile preparation process and the incorporation of multiple functionalities render the G-quadruplex hydrogel a highly promising candidate for advanced wound dressing. It holds great potential to transition from laboratory research to clinical practice, addressing the pressing needs of chronic wound management.


Asunto(s)
Sordera , Hidrogeles , Humanos , Polietileneimina , Vendajes , Antibacterianos/farmacología , Biopelículas
9.
Nat Commun ; 15(1): 1377, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355941

RESUMEN

Injectable biomaterials have garnered increasing attention for their potential and beneficial applications in minimally invasive surgical procedures and tissue regeneration. Extracellular matrix (ECM) hydrogels and porous synthetic polymer microspheres can be prepared for injectable administration to achieve in situ tissue regeneration. However, the rapid degradation of ECM hydrogels and the poor injectability and biological inertness of most polymeric microspheres limit their pro-regenerative capabilities. Here, we develop a biomaterial system consisting of elastic porous poly(l-lactide-co-ε-caprolactone) (PLCL) microspheres mixed with ECM hydrogels as injectable composites with interleukin-4 (IL-4) and insulin-like growth factor-1 (IGF-1) dual-release functionality. The developed multifunctional composites have favorable injectability and biocompatibility, and regulate the behavior of macrophages and myogenic cells following injection into muscle tissue. The elicited promotive effects on tissue regeneration are evidenced by enhanced neomusle formation, vascularization, and neuralization at 2-months post-implantation in a male rat model of volumetric muscle loss. Our developed system provides a promising strategy for engineering bioactive injectable composites that demonstrates desirable properties for clinical use and holds translational potential for application as a minimally invasive and pro-regenerative implant material in multiple types of surgical procedures.


Asunto(s)
Materiales Biocompatibles , Matriz Extracelular , Masculino , Ratas , Animales , Porosidad , Microesferas , Hidrogeles , Ingeniería de Tejidos/métodos
10.
Sci Total Environ ; 839: 156289, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35644389

RESUMEN

The discovery that insect larvae can feed on foam plastics provided new exploration ideas and potential for plastic wastes biodegradation. In previous studies, both attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR) and conventional FT-IR have been used but no comparison has been done to evaluate the difference of effectiveness for the characterization of oxidization and biodegradation of plastics by insect larvae. To address this, foam plastics of polystyrene, polyurethane and polyethylene, as well as the frass of plastics-fed superworms Zophobas atratus were characterized using both FT-IR and ATR-FT-IR, and the differences were compared. For FT-IR, spectra were found to vary due to the difference in shape and thickness of the samples, as well as the moisture absorption of KBr. For ATR-FT-IR, although tests could be performed directly without pretreatment, the reflection with short wavelength could not deeply penetrate into the frass samples. Since the composition of plastics-fed larval frass is more complex than the original plastics, the spectra of FT-IR and ATR-FT-IR were observed significantly different. Therefore, the ATR-FT-IR was more effective in monitoring functional groups of original plastics, and be recommended to employ in combination with FT-IR for a more comprehensive characterization of plastics-fed larval frass in future studies.


Asunto(s)
Escarabajos , Plásticos , Animales , Análisis de Fourier , Larva , Plásticos/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos
11.
Sci Total Environ ; 837: 155719, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35526626

RESUMEN

Larvae of superworms (Zophobas atratus Fab.) and yellow mealworms (Tenebrio molitor Linn.) can survive on sole plastic diets. However, no side-by-side comparison of plastics degradation by both species is available yet. Here, superworms and yellow mealworms were fed with polystyrene (PS) or polyurethane (PU) foam plastics as sole diets for 35 days with bran as control. Superworms survived 100% on all diets but decreased weights were observed after 20 days with sole plastic diets. In contrast, yellow mealworms survived 84.67% or 62.67% with PS or PU diet, respectively, both plastics diet groups showed increased weights. Cumulative consumption of plastics by superworms were 49.24 mg-PS/larva and 26.23 mg-PU/larva, which were 18 and 11 folds of that of yellow mealworms, respectively. When converted into mg/g-larvae, superworms had a higher PS consumption rate but both species had similar PU consumption rates. Similar changes of the plastic chemical functional groups in frass indicated occurrences of oxidation and biodegradation of plastics in the guts of both species. Changes of gut microbial communities were found associated with plastics feedstocks and larvae species. The increased relative abundances of unclassified Enterobacteriaceae, Klebsiella, Enterococcus, Dysgonomonas and Sphingobacterium were strongly associated with PS diet in superworms, while Hafnia was strongly associated with PS diet in yellow mealworms. Enterococcus and Mangrovibacter were dominant in PU-fed superworm guts, while unclassified Enterobacteriaceae and Hafnia were strongly associated with PU feeding in yellow mealworms. The results demonstrated that different plastics ingestion preferences and efficiencies of both species were associated with distinct dominant microbiomes although similar changes of chemical groups in plastics were observed.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Tenebrio , Animales , Escarabajos/metabolismo , Ingestión de Alimentos , Enterobacteriaceae/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Poliestirenos/metabolismo , Tenebrio/metabolismo
12.
Talanta ; 239: 123115, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890940

RESUMEN

Nowadays, molecularly imprinted polymers (MIPs) coated silica stationary phases (SPs) have aroused great attention, owing to their good properties of high selectivity, good stability, facile synthesis procedure and low cost. In this study, zidovudine imprinted polymers coated silica stationary phases (MIPs/SiO2 SPs) were synthesized by surface imprinting technique using zidovudine as the template molecule, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking agent, azobisisobutyronitrile as the initiator, and bare silica spheres (particle size, 5 µm; pore size, 20 nm) as substrates. In the process, reagents with low concentration were used to prepare thin layer of MIPs coating on the surface of silica microbeads. The properties of the materials were characterized by scanning electron microscope (SEM), fourier transform infrared spectrometer (FT-IR), carbon elemental analysis and N2 adsorption-desorption experiment. The obtained SPs were packed into stainless steel columns (2.1 mm × 150 mm) via a slurry method. The prepared columns were applied for separation of nucleoside analogues with similar chemical structures and strong polarity. The retention mechanism of MIPs/SiO2 SPs for nucleoside analogues was investigated carefully. And the chromatographic performances of the resulting MIPs based SPs were superior to those of the commercial SPs. Furthermore, the synthesized MIPs/SiO2 SPs possessed great potentials in separation of ginsenosides. This investigation demonstrated that MIPs based SPs were successfully synthesized and provided a new approach to polar compounds separation and analysis.


Asunto(s)
Impresión Molecular , Polímeros , Adsorción , Dióxido de Silicio , Espectroscopía Infrarroja por Transformada de Fourier , Zidovudina
13.
Chemosphere ; 282: 131006, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34118623

RESUMEN

In order to uncover the plastic types that superworm Zophobas atratus can degrade and the underlying changes associated with plastics consumption, three types of plastics including polystyrene (PS), polyethylene (PE) and polyurethane (PU) foam were used as sole feedstock to feed the superworm larvae for 35 days with bran as control. Compared to the control, PS- or PU-fed larvae showed 100% survival rates, the PE-fed and starvation larvae had decreased survival rates of 81.67% and 65%, respectively. Both plastics-fed and starvation groups showed decreased larvae weight. The consumption rates of PS, PE, and PU were 1.41, 0.30, and 0.74 mg/d/larva, respectively. The attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimeter and thermogravimetric (DSC-TGA) analyses demonstrated the changes of functional groups and thermostability in frass compared to plastic feedstocks, indicating the partial oxidation and degradation of plastics. Among the gut digestive enzymes tested, protease showed increased activities in all plastics-fed groups. Gut microbial communities displayed significant relative abundance changes such as increased abundances of Enterococcus in all plastic-fed groups, Citrobacter in PE-fed group, Dysgonomonas and Sphingobacterium in PS-fed group, and Mangrovibacter in PU-fed group. The latter 3 genera were reported for the first time. In summary, the results demonstrated that Z. atratus could efficiently degrade both PS and PU foam plastics, and the plastic degradation was associated with changes of gut microbial communities and digestive enzyme activities.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Microbiota , Animales , Biodegradación Ambiental , Larva , Plásticos , Poliestirenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA