Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemosphere ; 349: 140784, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38006920

RESUMEN

Microplastics (MPs), an emerging class of pollutants, significantly impact the photoconversion dynamics of tetracycline (TC). But the effect of prevalent dissolved organic matter (DOM) on TC photodegradation in the presence of MPs remains a gap in current research. In this study, the photoconversion behavior and mechanism of TC under simulated sunlight conditions were systematically investigated, both in the presence of DOM and in combination with polystyrene (PS) MPs. The results demonstrated that both DOM and MPs enhanced the photodegradation of TC when compared to its direct degradation. However, DOM, particularly humic acid (HA, 10 mg/L), exhibited a more pronounced enhancing effect on TC photodegradation within 1 h reaction, regardless of the presence or absence of MPs, reaching up to 80%. In reaction systems involving TC-HA and TC-HA-PS, the primary contributors to TC degradation were direct photolysis and HA photosensitization (free radical reactions). Conversely, photosensitization effects were not significant in the presence of fulvic acid (FA). Furthermore, even under dark reaction conditions, HA exhibited a 10% degradation effect on TC. Quenching experiments and electron spin resonance (ESR) results indicate that dark reaction processes involve free radical reactions. Additionally, toxicity test results showed a reduction in the acute toxicity of TC photodegradation products, yet the long-term cumulative risks to organisms deserved attention. In general, this investigation significantly advances our understanding of the intricate photoconversion behavior of TC in the presence of coexisting chemical components.


Asunto(s)
Materia Orgánica Disuelta , Contaminantes Químicos del Agua , Fotólisis , Microplásticos , Plásticos , Tetraciclina , Antibacterianos , Radicales Libres , Contaminantes Químicos del Agua/análisis
2.
Sci Total Environ ; 897: 165399, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442478

RESUMEN

Photoconversion of tetracycline (TC) has been widely reported. However, the effect of microplastics (MPs) on TC conversion kinetics and mechanism has rarely been discussed. In this study, we investigated the effect of (aged) MPs on TC degradation under simulated sunlight and elucidated the underlying mechanism. Our findings demonstrated that the physical and chemical properties of polystyrene (PS), such as particle size, surface groups, and morphology, were significantly altered after aging. Moreover, photoconversion efficiency of TC was suppressed with the spiking of aged PS, while virgin PS showed an opposite tendency. The photodegradation reaction for photosensitization of PS involved 1O2 and HO·. The light-screening effect of aged PS occupied predominance, weakening the direct UV-light absorption of TC and resulting in lower TC degradation efficiency. Additionally, triplet-excited state PS was generated after photon acceptance by aged PS, which could transfer energy to O2, leading to the production of 1O2. The toxicity test manifested that the direct impact of TC products on fathead minnow was ignorable, but long-term negative effects on growth deserved observation. This study enhances our understanding of the environmental fate of PS and TC under sunlight, and provides crucial reference information for better evaluating the potential risk of MPs and chemicals.


Asunto(s)
Compuestos Heterocíclicos , Contaminantes Químicos del Agua , Poliestirenos/toxicidad , Poliestirenos/química , Microplásticos/toxicidad , Microplásticos/química , Luz Solar , Plásticos , Contaminantes Químicos del Agua/análisis , Tetraciclina/toxicidad , Antibacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA