Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 6: 28126, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27324079

RESUMEN

Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration.


Asunto(s)
Regeneración Tisular Guiada Periodontal , Mandíbula/cirugía , Maxilar/cirugía , Trasplante de Células Madre Mesenquimatosas , Ligamento Periodontal/cirugía , Periodontitis/terapia , Fibrina Rica en Plaquetas/metabolismo , Adolescente , Adulto , Animales , Fosfatos de Calcio , Diferenciación Celular , Células Cultivadas , Dentina , Humanos , Masculino , Mandíbula/fisiología , Maxilar/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Ratones Desnudos , Osteogénesis , Ligamento Periodontal/fisiología , Periodontitis/cirugía , Ingeniería de Tejidos , Andamios del Tejido/química , Adulto Joven
2.
Int J Nanomedicine ; 10: 6571-85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26527874

RESUMEN

OBJECTIVE: To accelerate wound healing through promoting vascularization by using reactive oxygen species (ROS)-responsive nanoparticles loaded with stromal cell-derived factor-1α(SDF-1α). METHODS: The ROS-reactive nanomaterial poly-(1,4-phenyleneacetone dimethylene thioketal) was synthesized, and its physical and chemical properties were characterized. ROS-responsive nanoparticles containing SDF-1α were prepared through a multiple emulsion solvent evaporation method. The loading capacity, stability, activity of the encapsulated protein, toxicity, and in vivo distribution of these nanoparticles were determined. These nanoparticles were administered by intravenous infusion to mice with full-thickness skin defects to study their effects on the directed chemotaxis of bone marrow mesenchymal stem cells, wound vascularization, and wound healing. RESULTS: The synthesized ROS-reactive organic polymer poly-(1,4-phenyleneacetone dimethylene thioketal) possessed a molecular weight of approximately 11.5 kDa with a dispersity of 1.97. ROS-responsive nanoparticles containing SDF-1α were prepared with an average diameter of 110 nm and a drug loading capacity of 1.8%. The encapsulation process showed minimal effects on the activity of SDF-1α, and it could be effectively released from the nanoparticles in the presence of ROS. Encapsulated SDF-1α could exist for a long time in blood. In mice with full-thickness skin defects, SDF-1α was effectively released and targeted to the wounds, thus promoting the chemotaxis of bone marrow mesenchymal stem cells toward the wound and its periphery, inducing wound vascularization, and accelerating wound healing.


Asunto(s)
Quimiocina CXCL12/química , Quimiocina CXCL12/farmacología , Nanomedicina/métodos , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Piel/lesiones , Cicatrización de Heridas/efectos de los fármacos , Animales , Portadores de Fármacos/química , Liberación de Fármacos , Masculino , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Polímeros/química , Piel/irrigación sanguínea , Piel/efectos de los fármacos , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA