Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675519

RESUMEN

The massive amount of water-soluble urea used leads to nutrient loss and environmental pollution in both water and soil. The aim of this study was to develop a novel lignin-based slow-release envelope material that has essential nitrogen and sulfur elements for plants. After the amination reaction with a hydrolysate of yak hair keratin, the coating formulation was obtained by adding different loadings (2, 5, 8, 14 wt%) of aminated lignin (AL) to 5% polyvinyl alcohol (PVA) solution. These formulations were cast into films and characterized for their structure, thermal stability, and mechanical and physicochemical properties. The results showed that the PVA-AL (8%) formulation had good physical and chemical properties in terms of water absorption and mechanical properties, and it showed good degradation in soil with 51% weight loss after 45 days. It is suitable for use as a coating material for fertilizers. Through high-pressure spraying technology, enveloped urea particles with a PVA-AL (8%) solution were obtained, which showed good morphology and slow-release performance. Compared with urea, the highest urea release was only 96.4% after 30 days, conforming to Higuchi model, Ritger-Peppas model, and second-order dynamic model. The continuous nitrogen supply of PVA-AL coated urea to Brassica napus was verified by potting experiments. Therefore, the lignin-based composite can be used as a coating material to produce a new slow-release nitrogen fertilizer for sustainable crop production.


Asunto(s)
Lignina , Alcohol Polivinílico , Urea , Lignina/química , Alcohol Polivinílico/química , Urea/química , Preparaciones de Acción Retardada/química , Fertilizantes , Polímeros/química
2.
Int J Biol Macromol ; 230: 123210, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639077

RESUMEN

This is the first report of the use of steam flash explosion (SFE) to prepare chitinous nanoparticles from black soldier fly (BSF). SFE treatment was performed at a steam pressure of 0.45 to 1.60 MPa with a holding time of 60 s. As the pressure increased, the particle size of the chitinous particles decreased. Under SFE at 1.60 MPa, chitinous nanoparticles with sizes ranging from 59 to 162 nm were produced. SEM, AFM, Raman spectroscopy, FT-IR spectroscopy, 1H NMR, TGA, and DSC were used to characterize the BSF chitin materials. It was demonstrated that SFE treatment deacetylated chitin to obtain chitosan with 91.24 % deacetylation. In addition, the polymer backbone was maintained, and the degree of polymerization of chitosan nanoparticles was reduced. The activity of the cationic groups of chitosan nanoparticles was improved, thereby enhancing the temperature sensitivity of the polymeric material. It can be concluded that the SFE one-step processing method is a simple and efficient way to prepare homogeneous biomaterial nanoparticles. This study has implications for the development of chitosan nanomaterials for biomedical applications.


Asunto(s)
Quitosano , Dípteros , Nanopartículas , Animales , Quitina/química , Vapor , Larva , Quitosano/química , Espectroscopía Infrarroja por Transformada de Fourier , Explosiones , Polímeros
3.
ACS Biomater Sci Eng ; 6(12): 7004-7010, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33320632

RESUMEN

Silk fibroin is a natural polymer with a unique repetitive structure that translates to extraordinary properties in terms of processability and mechanical properties. The Bombyx mori silk has a molecular weight of ∼415 kDa and consists of a light chain and a heavy chain. Its heavy chain is organized into 12 crystalline domains. Each of these crystalline domains contains subdomains of ∼70 amino acid containing blocks. It is well understood that the heavy chain of the protein is responsible for its processing versatility and excellent mechanical properties; however, the need for the high number of monomeric repeating units is unclear, and the individual properties of crystalline regions compared to those of the full-length protein are not understood. The work described herein assessed the possibility of using recombinant crystalline regions as alternative biomaterials for applications such as tissue adhesives. Our results indicate that while the two tested substructures do not fully recapitulate the native silk fibroin's properties, they appear to be a suitable alternative for the production of silk-based medical adhesives.


Asunto(s)
Bombyx , Fibroínas , Aminoácidos , Animales , Materiales Biocompatibles , Seda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA