Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biomacromolecules ; 25(3): 1906-1915, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38394342

RESUMEN

Hydroxypropyl cellulose (HPC) is potentially interesting as a biobased, rigid food packaging material, but its stiffness and strength are somewhat low, and its water and oxygen transport rates are too high. To improve these characteristics, we investigated nanocomposites of HPC and cellulose nanocrystals (CNCs). These high-aspect-ratio nanoparticles display high stiffness and strength, and their high crystallinity renders them virtually impermeable. Exchanging the counterions of sulfate-ester decorated CNCs with cetyltrimethylammonium ions affords particles that are dispersible in ethanol (CTA.CNC) and allows solvent casting of HPC/CTA.CNC nanocomposite films, which, even at a CTA.CNC content of 90 wt %, are highly transparent. The introduction of CTA.CNC considerably increases the Young's modulus (Ey) and upper tensile strength (σUTS). For example, in the nanocomposite with 90% CTA.CNC, Ey = 7.6 GPa is increased 20-fold and σUTS = 42.7 MPa is more than doubled in comparison to HPC, whereas the extensibility (1.1%) remains appreciable. Composites with a CTA.CNC content of 70 wt % or less show a lower water vapor permeability (6.4-9.2 × 10-5 g µm m-2 s-1 Pa-1) than the neat HPC (1.5 × 10-4 g µm m-2 s-1 Pa-1), whereas the oxygen permeability (5.6 × 10-7-1.3 × 10-6 cm3 µm m-2 s-1 Pa-1) is reduced by 1 order of magnitude compared to HPC (3.2 × 10-6 cm3 µm m-2 s-1 Pa-1). The biobased nanocomposites retain their mechanical integrity at a relative humidity of 75% but readily disintegrate in water.


Asunto(s)
Nanocompuestos , Nanopartículas , Celulosa/química , Resistencia a la Tracción , Módulo de Elasticidad , Permeabilidad , Nanocompuestos/química , Nanopartículas/química
2.
Biomacromolecules ; 25(3): 1637-1648, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38381566

RESUMEN

Cellulose nanocrystals (CNCs) are bio-based, rod-like, high-aspect-ratio nanoparticles with high stiffness and strength and are widely used as a reinforcing nanofiller in polymer nanocomposites. However, due to hydrogen-bond formation between the large number of hydroxyl groups on their surface, CNCs are prone to aggregate, especially in nonpolar polymer matrices. One possibility to overcome this problem is to graft polymers from the CNCs' surfaces and to process the resulting "hairy nanoparticles" (HNPs) into one-component nanocomposites (OCNs) in which the polymer matrix and CNC filler are covalently connected. Here, we report OCNs based on HNPs that were synthesized by grafting gradient diblock copolymers onto CNCs via surface-initiated atom transfer radical polymerization. The inner block (toward the CNCs) is composed of poly(methyl acrylate) (PMA), and the outer block comprises a gradient copolymer rich in poly(methyl methacrylate) (PMMA). The OCNs based on such HNPs microphase separate into a rubbery poly(methyl acrylate) phase that dissipates mechanical energy and imparts toughness, a glassy PMMA phase that provides strength and stiffness, and well-dispersed CNCs that further reinforce the materials. This design afforded OCNs that display a considerably higher stiffness and strength than reference diblock copolymers without the CNCs. At the same time, the extensibility remains high and the toughness is increased up to 5-fold relative to the reference materials.


Asunto(s)
Acrilatos , Nanocompuestos , Nanopartículas , Celulosa/química , Polimetil Metacrilato , Polímeros/química , Nanopartículas/química , Nanocompuestos/química
3.
Chem Soc Rev ; 52(2): 728-778, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36537575

RESUMEN

Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Sistemas de Liberación de Medicamentos/métodos , Proteínas , Lípidos , Portadores de Fármacos/química
4.
Environ Sci Technol ; 57(45): 17201-17211, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37910579

RESUMEN

Research on the origin, distribution, detection, identification, and quantification of polymer nanoparticles (NPs) in the environment and their possible impact on animal and human health is surging. For different types of studies in this field, well-defined reference materials or mimics are needed. While isolated reports on the preparation of such materials are available, a simple and broadly applicable method that allows for the production of different NP types with well-defined, tailorable characteristics is still missing. Here, we demonstrate that a confined impinging jet mixing process can be used to prepare colloidally stable NPs based on polystyrene, polyethylene, polypropylene, and poly(ethylene terephthalate) with diameters below < 100 nm. Different fluorophores were incorporated into the NPs, to allow their detection in complex environments. To demonstrate their utility and detectability, fluorescent NPs were exposed to J774A.1 macrophages and visualized using laser scanning microscopy. Furthermore, we modified the NPs in a postfabrication process and changed their shape from spherical to heterogeneous geometries, in order to mimic environmentally relevant morphologies. The methodology used here should be readily applicable to other polymers and payloads and thus a broad range of NPs that enable studies of their behavior, uptake, translocation, and biological end points in different systems.


Asunto(s)
Microplásticos , Nanopartículas , Humanos , Polímeros , Polietilenos , Tamaño de la Partícula
5.
J Chem Phys ; 158(1): 014901, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36610969

RESUMEN

This paper presents a theoretical investigation of the design of a new actuator type made of anisotropic colloidal particles grafted with stimuli-responsive polymer chains. These artificial muscles combine the osmotic actuation principle of stimuli-responsive hydrogels with the structural alignment of colloidal liquid crystals to achieve directional motion. The solubility of the stimuli-responsive polymer in the neutral state, its degree of polymerization, the salt concentration, and the grafting density of the polymer chains on the surface of the colloidal particles are investigated and identified as important for actuator performance and tunability. The computational results suggest that the proposed mechanically active material matches or exceeds the performances of natural muscles and provide the guidelines for the realization of artificial muscles with predetermined actuation properties.


Asunto(s)
Nanocompuestos , Polímeros de Estímulo Receptivo , Polímeros/química , Hidrogeles/química
6.
Biomacromolecules ; 23(3): 699-707, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35029986

RESUMEN

One of the main challenges associated with the modification of cellulose nanocrystals (CNCs) with polymers by surface-initiated polymerization is the characterization of the resulting products, notably the molecular weight of the grafts. The solid nature of the (modified) CNC nanoparticles limits the possibility to apply solution-based characterization techniques, and the cleavage of the macromolecules from the surface of the CNCs to enable their characterization using solution-based techniques is intricate. Here, we report that 1H NMR spectroscopy of the supernatant of the heterogeneous reaction mixture can be used to approximate the molecular weight of poly(hexyl methacrylate) grafts grown from the surface of CNCs via surface-initiated atom transfer radical polymerization. This was achieved using 1H NMR spectra to determine the monomer conversion from the change of the relative ratio of monomer and solvent signals in the 1H NMR spectra, which in turn allowed determining the weight of PHMA produced. The number-average molecular weight of the grafted polymer was then estimated by assuming that standard atom transfer radical polymerization kinetics are at play and using the initiator concentration on the CNC surface determined by elemental analysis. The method was validated by comparing the results with the gravimetric data and the data of free polymers that were synthesized with a sacrificial initiator.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Peso Molecular , Nanopartículas/química , Polimerizacion , Polímeros/química
7.
Macromol Rapid Commun ; 43(3): e2100654, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34792266

RESUMEN

Many organisms rely on directional water transport schemes for the purpose of water retention and collection. Directional transport of water and other fluids is also technologically relevant, for example to harvest water, in separation processes, packaging solutions, functional clothing, and many other applications. One strategy to promote mass transport along a preferential direction is to create compositionally asymmetric, multi-layered, or compositionally graded architectures. In recent years, the investigation of natural and artificial membranes based on this design has attracted growing interest and allowed researchers to develop a good understanding of how the properties of such membranes can be tailored to meet the demands of particular applications. Here a summary of theoretical works on mass transport through dense asymmetric membranes, comprehensive reviews of biological and artificial membranes featuring this design, and a discussion of applications, remaining questions, and opportunities are provided.


Asunto(s)
Membranas Artificiales , Polímeros , Agua
8.
J Am Chem Soc ; 143(14): 5519-5525, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33784073

RESUMEN

A new approach to cyclophane-based supramolecular mechanophores is presented. We report a mechanically responsive cyclic motif that contains two fluorescent 1,6-bis(phenylethynyl)pyrene moieties that are capable of forming intramolecular excimers. The emission spectra of dilute solutions of this cyclophane and a polyurethane elastomer into which a small amount of the mechanophore (0.08 wt %) had been covalently integrated are dominated by excimer emission. Films of the cyclophane-containing polyurethane also display a considerable portion of excimer emission, but upon deformation, the fluorescence becomes monomer-dominated and a perceptible change from cyan to blue is observed. The response is instant, reversible, and consistent with a mechanically induced change of the molecular conformation of the mechanophore so that the excimer-promoting interactions between the luminophores are suppressed. In-depth investigations show a correlation between the applied strain and the emission color, which can conveniently be expressed by the ratio of monomer to excimer emission intensity. The current study suggests that cyclophanes can be utilized to develop various supramolecular mechanophores that detect and visualize weak forces occurring in polymeric materials or generated by living tissues.


Asunto(s)
Éteres Cíclicos/química , Sustancias Luminiscentes/química , Fenómenos Mecánicos , Polímeros/química
9.
Biomacromolecules ; 22(12): 5087-5096, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34734702

RESUMEN

On account of their high strength and stiffness and their renewable nature, cellulose nanocrystals (CNCs) are widely used as a reinforcing component in polymer nanocomposites. However, CNCs are prone to aggregation and this limits the attainable reinforcement. Here, we show that nanocomposites with a very high CNC content can be prepared by combining the cationic polymer poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) and negatively charged, carboxylated CNCs that are provided as a sodium salt (CNC-COONa). Free-standing films of the composites can be prepared by simple solvent casting from water. The appearance and polarized optical microscopy and electron microscopy images of these films suggest that CNC aggregation is absent, and this is supported by the very pronounced reinforcement observed. The incorporation of 33 wt % CNC-COONa into PMETAC allowed increasing the storage modulus of this already rather stiff, glassy amorphous matrix polymer from 1.5 ± 0.3 to 6.6 ± 0.1 GPa, while the maximum strength increased from 11 to 32 MPa. At this high CNC content, the reinforcement achieved in the PMETAC/CNC-COONa nanocomposite is much more pronounced than that observed for a reference nanocomposite made with unmodified CNCs (CNC-OH).


Asunto(s)
Nanocompuestos , Nanopartículas , Celulosa/química , Nanocompuestos/química , Nanopartículas/química , Polímeros , Electricidad Estática
10.
Biomacromolecules ; 22(8): 3552-3564, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34297531

RESUMEN

The hydrophilic polymer poly[2-(2-(2-methoxy ethoxy)ethoxy)ethylacrylate] (POEG3A) was grafted onto the reducing end-groups (REGs) of cellulose nanocrystal (CNC) allomorphs, and their liquid crystalline properties were investigated. The REGs on CNCs extracted from cellulose I (CNC-I) are exclusively located at one end of the crystallite, whereas CNCs extracted from cellulose II (CNC-II) feature REGs at both ends of the crystallite, so that grafting from the REGs affords asymmetrically and symmetrically decorated CNCs, respectively. To confirm the REG modification, several complementary analytical techniques were applied. The grafting of POEG3A onto the CNC REGs was evidenced by Fourier transform infrared spectroscopy, atomic force microscopy, and the coil-globule conformational transition of this polymer above 60 °C, i.e., its lower critical solution temperature. Furthermore, we investigated the self-assembly of end-tethered CNC-hybrids into chiral nematic liquid crystalline phases. Above a critical concentration, both end-grafted CNC allomorphs form chiral nematic tactoids. The introduction of POEG3A to CNC-I does not disturb the surface of the CNCs along the rods, allowing the modified CNCs to approach each other and form helicoidal textures. End-grafted CNC-II formed chiral nematic tactoids with a pitch observable by polarized optical microscopy. This is likely due to their increase in hydrodynamic radius or the introduced steric stabilization of the end-grafted polymer.


Asunto(s)
Cristales Líquidos , Nanopartículas , Celulosa , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros
11.
Biomacromolecules ; 22(6): 2702-2717, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34060815

RESUMEN

When cellulose nanocrystals (CNCs) are isolated from cellulose microfibrils, the parallel arrangement of the cellulose chains in the crystalline domains is retained so that all reducing end-groups (REGs) point to one crystallite end. This permits the selective chemical modification of one end of the CNCs. In this study, two reaction pathways are compared to selectively attach atom-transfer radical polymerization (ATRP) initiators to the REGs of CNCs, using reductive amination. This modification further enabled the site-specific grafting of the anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS) from the CNCs. Different analytical methods, including colorimetry and solution-state NMR analysis, were combined to confirm the REG-modification with ATRP-initiators and PSS. The achieved grafting yield was low due to either a limited conversion of the CNC REGs or side reactions on the polymerization initiator during the reductive amination. The end-tethered CNCs were easy to redisperse in water after freeze-drying, and the shear birefringence of colloidal suspensions is maintained after this process.


Asunto(s)
Celulosa , Nanopartículas , Polimerizacion , Agua
12.
Macromol Rapid Commun ; 42(1): e2000528, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33210385

RESUMEN

Mechanochromic effects in structurally colored materials are the result of deformation-induced changes to their ordered nanostructures. Polymeric materials which respond in this way to deformation offer an attractive combination of characteristics, including continuous strain sensing, high strain resolution, and a wide strain-sensing range. Such materials are potentially useful for a wide range of applications, which extend from pressure-sensing bandages to anti-counterfeiting devices. Focusing on the materials design aspects, recent developments in this field are summarized. The article starts with an overview of different approaches to achieve mechanochromic effects in structurally colored materials, before the physical principles governing the interaction of light with each of these materials types are summarized. Diverse methodologies to prepare these polymers are then discussed in detail, and where applicable, naturally occurring materials that inspired the design of artificial systems are discussed. The capabilities and limitations of structurally colored materials in reporting and visualizing mechanical deformation are examined from a general standpoint and also in more specific technological contexts. To conclude, current trends in the field are highlighted and possible future opportunities are identified.


Asunto(s)
Nanoestructuras , Polímeros
13.
Macromol Rapid Commun ; 42(1): e2000573, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33191595

RESUMEN

The development of mechanophores as building blocks that serve as predefined weak linkages has enabled the creation of mechanoresponsive and mechanochromic polymer materials, which are interesting for a range of applications including the study of biological specimens or advanced security features. In typical mechanophores, covalent bonds are broken when polymers that contain these chemical motifs are exposed to mechanical forces, and changes of the optical properties upon bond scission can be harnessed as a signal that enables the detection of applied mechanical stresses and strains. Similar chromic effects upon mechanical deformation of polymers can also be achieved without relying on the scission of covalent bonds. The dissociation of motifs that feature directional noncovalent interactions, the disruption of aggregated molecules, and conformational changes in molecules or polymers constitute an attractive element for the design of mechanoresponsive and mechanochromic materials. In this article, it is reviewed how such alterations of molecules and polymers can be exploited for the development of mechanochromic materials that signal deformation without breaking covalent bonds. Recent illustrative examples are highlighted that showcase how the use of such mechanoresponsive motifs enables the visual mapping of stresses and damage in a reversible and highly sensitive manner.


Asunto(s)
Fenómenos Mecánicos , Polímeros , Estrés Mecánico
14.
Biomacromolecules ; 21(6): 2032-2042, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32286809

RESUMEN

Hybrid bionanocomposites with shape-memory behavior are reported. The materials were accessed by combining a polyurethane matrix with a highly renewable carbon content, cellulose nanocrystals (CNCs), and magnetite nanoparticles (MNPs). The integration of the two nanoparticle types resulted in tough materials that display a higher stiffness and storage modulus in the glassy and rubbery state, thus contributing to the structural reinforcement, as well as magnetic properties, reflecting a synergistic effect of this combination. A quantitative characterization of the thermoactivated shape-memory effect made evident that the addition of CNCs increases the shape fixity, due to the higher glass transition temperature (Tg) and the higher stiffness below Tg than the neat PU, while the addition of MNPs made it possible to activate the shape recovery by applying an alternating magnetic field. Moreover, the new hybrid bionanocomposites showed good bio- and hemocompatibility.


Asunto(s)
Nanopartículas de Magnetita , Nanocompuestos , Nanopartículas , Celulosa , Poliuretanos
15.
Macromol Rapid Commun ; 41(7): e1900654, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32134544

RESUMEN

The development of polymers with built-in sensors that provide readily perceptible optical warning signs of mechanical events has received considerable interest. A simple and versatile concept to bestow polymers with mechanochromic behavior is the incorporation of dye-filled microcapsules. Such capsules release their cargo when their shell is damaged, and the dye is subsequently activated through a chemical or physical change that causes a chromogenic response. Here, we report the preparation of fluorescent poly(urea-formaldehyde) microcapsules containing solutions of a solvatochromic cyanostilbene dye and their integration in different polymers. When objects made from such composites are damaged, the dye solution is released from the containers, diffuses into the matrix, and the solvent evaporates. As a result, the polarity around the dye molecules changes, and this leads to a change of the fluorescence color. Alternatively, the dye is blended into the polymer matrix, microcapsules are loaded with a solvent, and the release of the latter triggers the color change. Both mechanisms afford ratiometric signals because the capsules that remain intact or dye molecules that are not exposed to the solvent can be used as a built-in reference; therefore, a quantitative assessment of the damage inflicted on the material is a priori possible.


Asunto(s)
Colorantes Fluorescentes/química , Formaldehído/química , Polímeros/química , Urea/química , Cápsulas/síntesis química , Cápsulas/química , Colorantes Fluorescentes/síntesis química , Formaldehído/síntesis química , Fenómenos Mecánicos , Estructura Molecular , Tamaño de la Partícula , Polímeros/síntesis química , Urea/síntesis química
16.
Chem Rev ; 117(20): 12851-12892, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28752995

RESUMEN

Materials with switchable mechanical properties are widespread in living organisms and endow many species with traits that are essential for their survival. Many of the mechanically morphing materials systems found in nature are based on hierarchical structures, which are the basis for mechanical robustness and often also the key to responsive behavior. Many "operating principles" involve cascades of events that translate cues from the environment into changes of the overall structure and/or the connectivity of the constituting building blocks at various levels. These concepts permit dramatic property variations without significant compositional changes. Inspired by the function and the growing understanding of the operating principles at play in biological materials with the capability to change their mechanical properties, significant efforts have been made toward mimicking such architectures and functions in artificial materials. Research in this domain has rapidly grown in the last two decades and afforded many examples of bioinspired materials that are able to reversibly alter their stiffness, shape, porosity, density, or hardness upon remote stimulation. This review summarizes the state of research in this field.


Asunto(s)
Materiales Biomiméticos/química , Polímeros/química , Modelos Moleculares , Estructura Molecular
17.
Environ Sci Technol ; 53(4): 1748-1765, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30629421

RESUMEN

On account of environmental concerns, the fate and adverse effects of plastics have attracted considerable interest in the past few years. Recent studies have indicated the potential for fragmentation of plastic materials into nanoparticles, i.e., "nanoplastics," and their possible accumulation in the environment. Nanoparticles can show markedly different chemical and physical properties than their bulk material form. Therefore possible risks and hazards to the environment need to be considered and addressed. However, the fate and effect of nanoplastics in the (aquatic) environment has so far been little explored. In this review, we aim to provide an overview of the literature on this emerging topic, with an emphasis on the reported impacts of nanoplastics on human health, including the challenges involved in detecting plastics in a biological environment. We first discuss the possible sources of nanoplastics and their fates and effects in the environment and then describe the possible entry routes of these particles into the human body, as well as their uptake mechanisms at the cellular level. Since the potential risks of environmental nanoplastics to humans have not yet been extensively studied, we focus on studies demonstrating cell responses induced by polystyrene nanoparticles. In particular, the influence of particle size and surface chemistry are discussed, in order to understand the possible risks of nanoplastics for humans and provide recommendations for future studies.


Asunto(s)
Salud Ambiental , Nanopartículas , Plásticos , Humanos , Tamaño de la Partícula , Poliestirenos
18.
Macromol Rapid Commun ; 40(9): e1800910, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30786085

RESUMEN

Bio-inspired, water-responsive, mechanically adaptive nanocomposites are reported based on cellulose nanocrystals (CNCs), poly(ethylene oxide-co-epichlorohydrin) (EO-EPI), and a small amount of poly(vinyl alcohol) (PVA), which is added to aid the dispersion of the CNCs. In the dry state, the CNCs form a reinforcing network within the polymer matrix, and the substantial stiffness increase relative to the neat polymer is thought to be the result of hydrogen-bonding interactions between the nanocrystals. Exposure to water, however, causes a large stiffness reduction, due to competitive hydrogen bonding of water molecules and the CNCs. It is shown here that the addition of PVA to the EO-EPI/CNC nanocomposite increases the modulus difference between the dry and the wet state by a factor of up to four compared to the nanocomposites without the PVA. The main reason is that the PVA leads to a substantial increase of the stiffness in the dry state; for example, the storage modulus E ' increased from 2.7 MPa (neat EO-EPI) to 50 MPa upon introduction of 10% CNCs, and to 200 MPa when additionally 5% of PVA was added. By contrast, the incorporation of PVA only led to moderate increases of the equilibrium water swelling and the E ' in the wet state.


Asunto(s)
Celulosa/química , Nanocompuestos/química , Nanopartículas/química , Polímeros/química
19.
Macromol Rapid Commun ; 40(1): e1800612, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30318724

RESUMEN

A general strategy to modify the structurally interesting poly(lactonic sophorolipid) (Poly(LSL)), a polymer derived from the biobased sophorolipid monomer, is presented. Effective backbone modification is achieved via a triazolinedione (TAD)-ene-reaction. This enables the straightforward introduction of various functionalities to the double bond in the fatty acid segment of the Poly(LSL). The reaction occurs quantitatively in stoichiometric ratios up to a targeted functionalization degree of 50% and complete functionalization of all double bonds is feasible when three equivalents excess of the TAD moiety with respect to the double bonds are used. It is shown that the thermal and mechanical properties of the modified polymers can be tailored via type and degree of functionalization. The exploited TAD ligation fulfills the criteria of an economic and efficient reaction, making the presented modification strategy straightforward to fine-tune the material properties and extending the applicability of Poly(LSL) as a material.


Asunto(s)
Ácidos Oléicos/química , Polímeros/química , Materiales Biocompatibles/química , Estructura Molecular
20.
Macromol Rapid Commun ; 40(1): e1800705, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30417478

RESUMEN

A well-known approach toward mechanochromic polymers relies on the incorporation of excimer-forming fluorophores into a matrix polymer and the disruption of aggregated chromophores when such materials undergo macroscopic mechanical deformation. However, the required aggregates and stress-transfer processes have so far only been realized with select dye/polymer combinations. As demonstrated here, the utility of this approach can be extended by tethering an excimer-forming cyano-substituted oligo(p-phenylene vinylene) fluorophore to the two ends of a telechelic poly(ethylene-co-butylene) and blending small amounts (0.1-2 wt%) of the resulting aggregachromic macromolecule into polymer matrices such as poly(ε-caprolactone), poly(isoprene), or poly(styrene-b-butadiene-b-styrene). All blends display mechanofluorochromic responses, and the ratio between the monomer and excimer emission intensities can be used to correlate the luminescence signal to the extent of deformation and to follow subsequent relaxation processes. The developed approach significantly expands the scope of blend-based mechanoresponsive luminescent materials.


Asunto(s)
Sustancias Luminiscentes/química , Polímeros/química , Sustancias Macromoleculares/química , Fenómenos Mecánicos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA