Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Dev Ind Pharm ; 49(2): 217-231, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36994666

RESUMEN

OBJECTIVE: To prepare porous core-shell composite particles (PCPs) in order to improve the flowability and compactibility of powder materials for direct compaction (DC), as well as the dissolution of tablets. SIGNIFICANCE: The results obtained are meaningful to boosting the development and further research of PCPs on DC. Methods: In this study, hydroxypropyl methylcellulose (HPMC E3) and polyvinylpyrrolidone (PVP K30) were selected as shell materials, the Xiao Er Xi Shi formulation powder (XEXS) was used as the core materials, ammonium bicarbonate (NH4HCO3), and sodium bicarbonate (NaHCO3) were employed as pore-forming agent. Using co-spray drying method to prepare composite particles (CPs). Then, the physical properties and comparison between different CPs were characterized comprehensively. Finally, the different CPs were directly compacted as tablets to explore the effect on the dissolution behavior of DC tablets, respectively. RESULTS: (i) The XEXS PCPs were prepared successfully by co-spray drying, and the yield of PCPs is almost 80%; (ii) The TS values of PCP-X-P-Na, PCP-X-P-NH4, PCP-X-H-Na and PCP-X-P-Na were 5.70, 7.56, 3.98, and 6.88 times higher than that of raw material (X); (iii) The disintegration time of PCPs tablets decreased 10-25% when compared with CPs tablets; (iv) The values of Carr's index (CI), Hausner ratio (HR), Caking strength (CS), and Cohesion index (CoI) of PCP-X-H-NH4 were 19.16%, 19.29%, 40.14%, and 6.39% lower than that of X, respectively. CONCLUSIONS: The PCPs prepared by co-spray drying did improve the flowability and compactibility of powder, as well as the dissolution of tablets.


Asunto(s)
Povidona , Polvos , Porosidad , Composición de Medicamentos/métodos , Comprimidos , Solubilidad
2.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2949-2957, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-37381955

RESUMEN

This study aims to improve the solubility and bioavailability of daidzein by preparing the ß-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocrystals. Specifically, the nanocrystals were prepared with daidzein as a model drug, PEG_(20000), Carbomer_(940), and NaOH as a plasticizer, a gelling agent, and a crosslinking agent, respectively. A two-step method was employed to prepare the ß-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocystals. First, the insoluble drug daidzein was embedded in ß-cyclodextrin to form inclusion complexes, which were then encapsulated in the PEG_(20000)/Carbomer_(940) nanocrystals. The optimal mass fraction of NaOH was determined as 0.8% by the drug release rate, redispersability, SEM morphology, encapsulation rate, and drug loading. The inclusion status of daidzein nanocrystals was determined by Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TGA), and X-ray diffraction(XRD) analysis to verify the feasibility of the preparation. The prepared nanocrystals showed the average Zeta potential of(-30.77±0.15)mV and(-37.47±0.64)mV and the particle sizes of(333.60±3.81)nm and(544.60±7.66)nm before and after daidzein loading, respectively. The irregular distribution of nanocrystals before and after daidzein loading was observed under SEM. The redispersability experiment showed high dispersion efficiency of the nanocrystals. The in vitro dissolution rate of nanocrystals in intestinal fluid was significantly faster than that of daidzein, and followed the first-order drug release kinetic model. XRD, FTIR, and TGA were employed to determine the polycrystalline properties, drug loading, and thermal stability of the nanocrystals before and after drug loading. The nanocrystals loaded with daidzein demonstrated obvious antibacterial effect. The nanocrystals had more significant inhibitory effects on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa than daidzein because of the improved solubility of daidzein. The prepared nanocrystals can significantly increase the dissolution rate and oral bioavailability of the insoluble drug daidzein.


Asunto(s)
Resinas Acrílicas , Nanopartículas , Hidróxido de Sodio , Escherichia coli
3.
PLoS Comput Biol ; 17(9): e1008964, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34478445

RESUMEN

The dynamics by which polymeric protein filaments divide in the presence of negligible growth, for example due to the depletion of free monomeric precursors, can be described by the universal mathematical equations of 'pure fragmentation'. The rates of fragmentation reactions reflect the stability of the protein filaments towards breakage, which is of importance in biology and biomedicine for instance in governing the creation of amyloid seeds and the propagation of prions. Here, we devised from mathematical theory inversion formulae to recover the division rates and division kernel information from time-dependent experimental measurements of filament size distribution. The numerical approach to systematically analyze the behaviour of pure fragmentation trajectories was also developed. We illustrate how these formulae can be used, provide some insights on their robustness, and show how they inform the design of experiments to measure fibril fragmentation dynamics. These advances are made possible by our central theoretical result on how the length distribution profile of the solution to the pure fragmentation equation aligns with a steady distribution profile for large times.


Asunto(s)
Citoesqueleto/química , Modelos Teóricos , Proteínas/química , Amiloide/química , Biopolímeros/química
4.
J Appl Microbiol ; 133(2): 842-856, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35490352

RESUMEN

AIMS: The aim was to characterize indigenous micro-organisms in oil reservoirs after polymer flooding (RAPF). METHODS: The microbial communities in the crude oil phase (Oil) and in the filter-graded aqueous phases Aqu0.22 (>0.22 µm) and Aqu0.1 (0.1-0.22 µm) were investigated by 16S rRNA gene high-throughput sequencing. RESULTS: Indigenous micro-organisms related to hydrocarbon degradation prevailed in the three phases of each well. However, obvious differences in bacterial compositions were observed amongst the three phases of the same well and amongst the same phase of different wells. The crude oil and Aqu0.22 shared many dominant bacteria. Aqu0.1 contained a unique bacterial community in each well. Most bacteria in Aqu0.1 were affiliated to culturable genera, suggesting that they may adapt to the oil reservoir environment by reduction of cell size. Contrary to the bacterial genera, archaeal genera were similar in the three phases but varied in relative abundances. The observed microbial differences may be driven by specific environmental factors in each oil well. CONCLUSIONS: The results suggest an application potential of microbial enhanced oil recovery (MEOR) technology in RAPF. The crude oil and Aqu0.1 contain many different functional micro-organisms related to hydrocarbon degradation. Both should not be overlooked when investing and exploring the indigenous micro-organisms for MEOR. SIGNIFICANCE AND IMPACT OF THE STUDY: This work facilitates the understanding of microbial community structures in RAPF and provides information for microbial control in oil fields.


Asunto(s)
Microbiota , Petróleo , Bacterias/genética , Hidrocarburos , Microbiota/genética , Yacimiento de Petróleo y Gas , Polímeros , ARN Ribosómico 16S/genética , Agua
5.
J Biomech Eng ; 144(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34751734

RESUMEN

Previous studies have shown that reconstructive surgery alone following injury to the anterior cruciate ligament (ACL) does not prevent the development of post-traumatic osteoarthritis (PTOA). Poloxamer 188 (P188) has been shown to prevent cell death following trauma in both articular cartilage and meniscal tissue. This study aims to test the efficacy of single or multiple administrations of P188 in conjunction with reconstructive surgery to help prevent or delay the onset of the disease. Thirty skeletally mature rabbits underwent closed-joint trauma that resulted in ACL rupture and meniscal damage and were randomly assigned to one of four treatment groups with varying doses of P188. ACL reconstruction was then performed using an autograft from the semitendinosus tendon. Animals were euthanized 1-month following trauma, meniscal tissue was assessed for changes in morphology, mechanical properties, and proteoglycan content. Femurs and tibias were scanned using microcomputed tomography to determine changes in bone quality, architecture, and osteophyte formation. The medial meniscus experienced more damage and a decrease in the instantaneous modulus regardless of treatment group, while P188 treatment tended to limit degenerative changes in the lateral meniscus. Both lateral and medial menisci had documented decreases in the equilibrium modulus and inconsistent changes in proteoglycan content. Minimal changes were documented in the tibias and femurs, with the only significant change being the formation of osteophytes in both bones regardless of treatment group. The data suggest that P188 was able to limit some degenerative changes in the meniscus associated with PTOA and may warrant future studies.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Cartílago Articular , Traumatismos de la Rodilla , Osteoartritis , Animales , Lesiones del Ligamento Cruzado Anterior/complicaciones , Lesiones del Ligamento Cruzado Anterior/metabolismo , Lesiones del Ligamento Cruzado Anterior/cirugía , Traumatismos de la Rodilla/complicaciones , Meniscos Tibiales/metabolismo , Poloxámero/metabolismo , Proteoglicanos/metabolismo , Conejos , Microtomografía por Rayos X
6.
Ecotoxicol Environ Saf ; 232: 113292, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35152112

RESUMEN

Microplastics are the critical carriers of heavy metals in the environment. Thus, investigating the adsorption mechanisms between the microplastics and heavy metals is helpful to understand the migration and transformation pattern of the heavy metals in the environment. The adsorption of microplastics towards heavy metals can be largely affected by natural aging (e.g., UV-aging), environmental pH, and salinity. In this study, the adsorption of polystyrene (PS) towards Cu2+ and the effects of UV-aging, environment pH, and salinity on the adsorption were systematically investigated. The results show that the adsorption capacity of PS towards Cu2+ increased with the UV-aging time, as UV-aging increased the microcracks and oxygen-containing functional groups on the surface of the PS. Adsorption kinetics data followed the pseudo-second-order model, indicating that the interaction between PS and Cu2+ is chemical adsorption. Adsorption isotherms data could be well-described by both the Langmuir and Freundlich models, indicating that the adsorption was multilayer adsorption. As the solution pH and salinity can influence the surface charge of the PS, they could also affect the performance of the PS on Cu2+ adsorption. High pH facilitated the adsorption of PS towards Cu2+, while high salinity (above 1‰) inhibited the adsorption.


Asunto(s)
Poliestirenos , Contaminantes Químicos del Agua , Adsorción , Cinética , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis
7.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142338

RESUMEN

Novel radar-wave absorption nanocomposites are developed by filling the nanoscaled ferrites of strontium ferroxide (SrFe12O19) and carbonyl iron (CIP) individually into the highly flexible liquid silicone rubber (LSR) considered as dielectric matrix. Nanofiller dispersivities in SrFe12O19/LSR and CIP/LSR nanocomposites are characterized by scanning electronic microscopy, and the mechanical properties, electric conductivity, and DC dielectric-breakdown strength are tested to evaluate electrical insulation performances. Radar-wave absorption performances of SrFe12O19/LSR and CIP/LSR nanocomposites are investigated by measuring electromagnetic response characteristics and radar-wave reflectivity, indicating the high radar-wave absorption is dominantly derived from magnetic losses. Compared with pure LSR, the SrFe12O19/LSR and CIP/LSR nanocomposites represent acceptable reductions in mechanical tensile and dielectric-breakdown strengths, while rendering a substantial nonlinearity of electric conductivity under high electric fields. SrFe12O19/LSR nanocomposites provide high radar-wave absorption in the frequency band of 11~18 GHz, achieving a minimum reflection loss of -33 dB at 11 GHz with an effective absorption bandwidth of 10 GHz. In comparison, CIP/LSR nanocomposites realize a minimum reflection loss of -22 dB at 7 GHz and a remarkably larger effective absorption bandwidth of 3.9 GHz in the lower frequency range of 2~8 GHz. Radar-wave transmissions through SrFe12O19/LSR and CIP/LSR nanocomposites in single- and double-layered structures are analyzed with CST electromagnetic-field simulation software to calculate radar reflectivity for various absorbing-layer thicknesses. Dual-layer absorbing structures are modeled by specifying SrFe12O19/LSR and CIP/LSR nanocomposites, respectively, as match and loss layers, which are predicted to acquire a significant improvement in radar-wave absorption when the thicknesses of match and loss layers approach 1.75 mm and 0.25 mm, respectively.


Asunto(s)
Radar , Elastómeros de Silicona , Electricidad , Hierro/química , Estroncio
8.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012715

RESUMEN

In order to restrain electric-stress impacts of water micro-droplets in insulation defects under alternating current (AC) electric fields in crosslinked polyethylene (XLPE) material, the present study represents chemical graft modifications of introducing chloroacetic acid allyl ester (CAAE) and maleic anhydride (MAH) individually as two specific polar-group molecules into XLPE material with peroxide melting approach. The accelerated water-tree aging experiments are implemented by means of a water-blade electrode to measure the improved water resistance and the affording mechanism of the graft-modified XLPE material in reference to benchmark XLPE. Melting−crystallization process, dynamic viscoelasticity and stress-strain characteristics are tested utilizing differential scanning calorimeter (DSC), dynamic thermomechanical analyzer (DMA) and electronic tension machine, respectively. Water-tree morphology is observed for various aging times to evaluate dimension characteristics in water-tree developing processes. Monte Carlo molecular simulations are performed to calculate free-energy, thermodynamic phase diagram, interaction parameter and mixing energy of binary mixing systems consisting of CAAE or MAH and water molecules to evaluate their thermodynamic miscibility. Water-tree experiments indicate that water-tree resistance to XLPE can be significantly improved by grafting CAAE or MAH, as indicated by reducing the characteristic length of water-trees from 120 to 80 µm. Heterogeneous nucleation centers of polyethylene crystallization are rendered by the grafted polar-group molecules to ameliorate crystalline microstructures, as manifested by crystallinity increment from 33.5 to 36.2, which favors improving water-tree resistance and mechanical performances. The highly hydrophilic nature of CAAE can evidently inhibit water molecules from aggregating into water micro-droplets in amorphous regions between crystal lamellae, thus acquiring a significant promotion in water-tree resistance of CAAE-modified XLPE. In contrast, the grafted MAH molecules can enhance van der Waals forces between polyethylene molecular chains in amorphous regions much greater than the grafted CAAE and simultaneously act as more efficient crystallization nucleation centers to ameliorate crystalline microstructures of XLPE, resulting in a greater improvement (relaxation peak magnitude increases by >10%) of mechanical toughness in amorphous phase, which primarily accounts for water-tree resistance promotion.


Asunto(s)
Prótesis de Cadera , Polietileno , Anhídridos Maleicos , Polietileno/química , Falla de Prótesis , Agua
9.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4505-4516, 2022 Aug.
Artículo en Zh | MEDLINE | ID: mdl-36046880

RESUMEN

This study aims to obtain higher-level evidence by overviewing the Meta-analysis of Lianhua Qingwen preparations in the treatment of viral diseases including influenza, coronavirus disease 2019(COVID-19), and hand, foot and mouth disease(HFMD). CNKI, Wanfang, VIP, China Clinical Trial Registry(ChiCTR), PubMed, EMbase, Web of Science, and Cochrane Library were searched for the Meta-analysis about the treatment of viral diseases with Lianhua Qingwen preparations from the database establishment to April 1, 2022. After literature screening and data extraction, AMSTAR2 and the grading of recommendations assessment, development and evaluations(GRADE) system were used to assess the methodological quality and evidence quality, respectively, and then the efficacy and safety outcomes of Lianhua Qingwen preparations in the treatment of viral diseases were summarized. Thirteen Meta-analysis were finally included, three of which were rated as low grade by AMSTAR2 and ten as very low grade. A total of 75 outcome indicators were obtained, involving influenza, COVID-19, and HFMD. According to the GRADE scoring results, the 75 outcome indicators included 5(6.7%) high-level indicators, 18(24.0%) mediate-level indicators, 25(33.3%) low-level evidence indicators, and 27(36.0%) very low-level indicators.(1)In the treatment of influenza, Lianhua Qingwen preparations exhibited better clinical efficacy than other Chinese patent medicines and Ribavirin and had similar clinical efficacy compared with Oseltamivir. Lianhua Qingwen preparations were superior to other Chinese patent medicines, Oseltamivir, and Ribavirin in alleviating clinical symptoms. They showed no significant differences from Oseltamivir or conventional anti-influenza treatment in terms of the time to and rate of negative result of viral nucleic acid test.(2)In the treatment of COVID-19, Lianhua Qingwen preparation alone or combined with conventional treatment was superior to conventional treatment in terms of total effective rate, main symptom subsidence rate and time, fever clearance rate, duration of fever, time to fever clearance, cough subsidence rate, time to cough subsidence, fatigue subsidence rate, time to fatigue subsidence, myalgia subsidence rate, expectoration subsidence rate, chest tightness subsidence rate, etc. Lianhua Qingwen preparations no difference from conventional treatment in terms of subsiding sore throat, nausea, diarrhea, loss of appetite, headache, and dyspnea. In terms of chest CT improvement rate, rate of progression to severe case, cure time, and hospitalization time, Lianhua Qingwen alone or in combination with conventional treatment was superior to conventional treatment.(3)In the treatment of HFMD, Lianhua Qingwen Granules was superior to conventional treatment in terms of total effective rate, average fever clearance time, time to herpes subsidence, and time to negative result of viral nucleic acid test.(4)In terms of safety, Lianhua Qingwen preparations led to low incidence of adverse reactions, all of which were mild and disappeared after drug withdrawal. The available evidence suggests that in the treatment of influenza, COVID-19, and HFMD, Lianhua Qingwen preparations can relieve the clinical symptoms, shorten the hospitalization time, and improve the chest CT. They have therapeutic effect and good safety in the treatment of viral diseases. However, due to the low quality of available studies, more high-quality clinical trials are needed to support the above conclusions.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos , Gripe Humana , Ácidos Nucleicos , Tos , Medicamentos Herbarios Chinos/uso terapéutico , Fatiga , Fiebre/tratamiento farmacológico , Humanos , Gripe Humana/tratamiento farmacológico , Metaanálisis como Asunto , Medicamentos sin Prescripción/uso terapéutico , Ácidos Nucleicos/uso terapéutico , Oseltamivir/uso terapéutico , Ribavirina/uso terapéutico
10.
Macromol Rapid Commun ; 42(23): e2100551, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34610177

RESUMEN

This work has prepared polymeric self-assembled monolayer (SAM) sensors for the detection of trace volatile nitroaromatic compound (NAC) explosives by fluorescence quenching. A typical aggregation-induced emission (AIE) luminogen 1,1,2,2-tetraphenylethene (TPE) polymerizes into PTPE to increase the fluorescence intensity in the SAMs, and the phosphoric acid acts as the anchor group to form stable covalent bonds with the Al2 O3 substrate. This design takes advantage of the high sensitivity and good stability of SAMs, and high fluorescence intensity, and "wire effect" of the conjugated polymers. The polymeric SAM sensors are prepared on the Al2 O3 silicon wafer and testing paper. Both of them show good response speed, reversibility, selectivity, and sensitivity. The detection limits down to 0.07, 0.35, and 4.11 ppm for TNT, DNB, and NB, respectively, are achieved on the inorganic testing paper. Furthermore, due to the higher fluorescence intensity by interlacing and overlapping of fibers, the detection of the paper can be distinguished by naked eyes even with a low-power handheld UV lamp, which provides an experimental basis for the development of cheap and easy trace NAC explosive sensors.


Asunto(s)
Sustancias Explosivas , Fluorescencia , Polímeros
11.
Molecules ; 25(18)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927806

RESUMEN

The water-resistant characteristics of ultraviolet crosslinked polyethylene (UV-XLPE) are investigated specially for the dependence on the hydrophilicities of auxiliary crosslinkers, which is significant to develop high-voltage insulating cable materials. As auxiliary crosslinking agents of polyethylene, triallyl isocyanurate (TAIC), trimethylolpropane trimethacrylate (TMPTMA), and N,N'-m-phenylenedimaleimide (HAV2) are individually adopted to prepared XLPE materials with the UV-initiation crosslinking technique, for the study of water-tree resistance through the accelerating aging experiments with water blade electrode. The stress-strain characteristics and dynamic viscoelastic properties of UV-XLPE are tested by the electronic tension machine and dynamic thermomechanical analyzer. Monte Carlo molecular simulation is used to calculate the interaction parameters and mixing energy of crosslinker/water binary systems to analyze the compatibility between water and crosslinker molecules. Water-tree experiments verify that XLPE-TAIC represents the highest ability to inhibit the growth of water-trees, while XLPE-HAV2 shows the lowest resistance to water-trees. The stress-strain and viscoelastic properties show that the concentration of molecular chains connecting the adjacent lamellae in amorphous phase of XLPE-HAV2 is significantly higher than that of XLPE-TAIC and XLPE-TMPTMA. The molecular simulation results demonstrate that TAIC/water and TMPTMA/water binary systems possess a higher hydrophilicity than that of HAV2/water, as manifested by their lower interaction parameters and mixing free energies. The auxiliary crosslinkers can not only increase the molecular density of amorphous polyethylene between lamellae to inhibit water-tree growth, but also prevent water molecules at insulation defects from agglomerating into micro-water beads by increasing the hydrophilicity of auxiliary crosslinkers, which will evidently reduce the damage of micro-water beads on the amorphous phase in UV-XLPE. The better compatibility of TAIC and water molecules is the dominant reason accounting for the excellent water resistance of XLPE-TAIC.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Polietileno/química , Árboles , Rayos Ultravioleta , Agua , Algoritmos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Estructura Molecular , Método de Montecarlo
12.
Molecules ; 25(16)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806568

RESUMEN

Water-tree resistances of styrene block copolymer/polypropylene (SEBS/PP) composites are investigated by characterizing crystallization structures in correlation with the dynamic mechanical properties to elucidate the micro-structure mechanism of improving insulation performances, in which the accelerated aging experiments of water trees are performed with water-knife electrodes. The water-tree morphology in spherulites, melt-crystallization characteristics and lamella structures of the composite materials are observed and analyzed by polarizing microscopy (PLM), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. Dynamic relaxation and stress-strain characteristics are specifically studied by means of a dynamic thermomechanical analyzer (DMA) and electronic tension machine, respectively. No water-tree aging occurs in both the highly crystalline PP and the noncrystalline SEBS elastomer, while the water trees arising in SEBS/PP composites still has a significantly lower size than that in low-density polyethylene (LDPE). Compared with LDPE, the PP matrix of the SEBS/PP composite represent a higher crystallinity with a larger crystallization size in consistence with its higher mechanical strength and lower dynamic relaxation loss. SEBS molecules agglomerate as a "island" phase, and PP molecules crystallize into thin and short lamellae in composites, leading to the blurred spherulite boundary and the appreciable slips between lamellae under external force. The high crystallinity of the PP matrix and the strong resistance to slips between lamellae in the SEBS/PP composite essentially account for the remarkable inhibition on water-tree growth.


Asunto(s)
Polipropilenos/química , Poliestirenos/química , Agua/química , Cristalización
13.
Molecules ; 25(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825451

RESUMEN

In order to inhibit the outward-migrations of photo-initiator molecules in the ultraviolet-initiated crosslinking process and simultaneously improve the crosslinking degree and dielectric properties of crosslinked polyethylene (XLPE) materials, we have specifically developed surface-modified-SiO2/XLPE nanocomposites with the silica nanofillers that have been functionalized through chemical surface modifications. With the sulfur-containing silanes and 3-mercaptopropyl trimethoxy silane (MPTMS), the functional monomers of auxiliary crosslinker triallyl isocyanurate (TAIC) have been successfully grafted on the silica surface through thiol-ene click chemistry reactions. The grafted functional groups are verified by molecular characterizations of Fourier transform infrared spectra and nuclear magnetic resonance hydrogen spectra. Scanning electronic microscopy (SEM) indicates that the functionalized silica nanoparticles have been filled into polyethylene matrix with remarkably increased dispersivity compared with the neat silica nanoparticles. Under ultraviolet (UV) irradiation, the high efficient crosslinking reactions of polyethylene molecules are facilitated by the auxiliary crosslinkers that have been grafted onto the surfaces of silica nanofillers in polyethylene matrix. With the UV-initiated crosslinking technique, the crosslinking degree, insulation performance, and space charge characteristics of SiO2/XLPE nanocomposites are investigated in comparison with the XLPE material. Due to the combined effects of the high dispersion of nanofillers and the polar-groups of TAIC grafted on the surfaces of SiO2 nanofillers, the functionlized-SiO2/XLPE nanocomposite with an appropriate filling content represents the most preferable crosslinking degree with multiple improvements in the space charge characteristics and direct current dielectric breakdown strength. Simultaneously employing nanodielectric technology and functional-group surface modification, this study promises a modification strategy for developing XLPE nanocomposites with high mechanical and dielectric performances.


Asunto(s)
Nanocompuestos/química , Polietileno/química , Dióxido de Silicio/química , Rayos Ultravioleta , Química Clic
14.
Molecules ; 25(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878192

RESUMEN

Space charge characteristics of cross-linked polyethylene (XLPE) at elevated temperatures have been evidently improved by the graft modifications with ultraviolet (UV) initiation technique, which can be efficiently utilized in industrial cable manufactures. Maleic anhydride (MAH) of representative cyclic anhydride has been successfully grafted onto polyethylene molecules through UV irradiation process. Thermal stimulation currents and space charge characteristics at the elevated temperatures are coordinately analyzed to elucidate the trapping behavior of blocking charge injection and impeding carrier transport which is caused by grafting MAH. It is also verified from the first-principles calculations that the bound states as charge carrier traps can be introduced by grafting MAH onto polyethylene molecules. Compared with pure XLPE, the remarkably suppressed space charge accumulations at high temperatures have been achieved in XLPE-g-MAH. The polar groups on the grafted MAH can provide deep traps in XLPE-g-MAH, which will increase charge injection barrier by forming a charged layer of Coulomb-potential screening near electrodes and simultaneously reduce the electrical mobility of charge carriers by trap-carrier scattering, resulting in an appreciable suppression of space charge accumulations inside material. The exact consistence of experimental results with the quantum mechanics calculations demonstrates a promising routine for the modification strategy of grafting polar molecules with UV initiation technique in the development of high-voltage DC cable materials.


Asunto(s)
Anhídridos Maleicos/química , Polietileno/química , Temperatura , Rayos Ultravioleta , Modelos Moleculares , Conformación Molecular , Espectroscopía Infrarroja por Transformada de Fourier
15.
Molecules ; 25(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650504

RESUMEN

In order to improve the mechanical and dielectric properties of radome cyanate, a synergistic reinforcement method is employed to develop a resin-based ternary-composite with high heat-resistance and preferable radar-band transmission, which is expected to be applied to fabricate radomes capable of resisting high temperature and strong electric field. According to copolymerization characteristics and self-curing mechanism, epoxy resin (EP) and bismaleimide (BMI) are employed as reinforcements mixed into a cyanate ester (CE) matrix to prepare CE/BMI/EP composites of a heat-resistant radome material by high-temperature viscous-flow blending methods under the catalysis of aluminum acetylpyruvate. The crystallization temperature, transition heat, and reaction rate of cured polymers were tested to analyze heat-resistance characteristics and evaluate material synthesis processes. Scanning electron microscopy was used to characterize the micro-morphology of tensile fracture, which was combined with the tensile strength test and dynamic thermomechanical analysis to investigate the composite modifications on tenacity and rigidity. Weibull statistics were performed to analyze the experimental results of the dielectric breakdown field, and the dielectric-polarization and wave-transmission performances were investigated according to alternative current dielectric spectra. Compared with the pure CE and the CE composites individually reinforced by EP or BMI, the CE/BMI/EP composite acquires the most significant amelioration in both the mechanical and electrical insulation performances as indicated by the breaking elongation and dielectric breakdown strength being simultaneously improved by 40%, which are consistently manifested by the obviously increased transverse lines uniformly distributed on the fracture cross-section. Furthermore, the glass-transition temperature of CE/BMI/EP composite reaches the highest values of nearly 300 °C, with the relative dielectric constant and dielectric loss being mostly reduced to less than 3.2 and 0.01, respectively. The experimental results demonstrate that the CE/BMI/EP composite is a highly-qualified wave-transmission material with preferences in mechanical, thermostability, and electrical insulation performances, suggesting its prospective applications in low-frequency transmittance radomes.


Asunto(s)
Cianatos/química , Resinas Epoxi/química , Ensayo de Materiales , Calor , Propiedades de Superficie
16.
Zhongguo Zhong Yao Za Zhi ; 44(7): 1363-1370, 2019 Apr.
Artículo en Zh | MEDLINE | ID: mdl-31090293

RESUMEN

In order to increase the stability and solubility of essential oil in Jieyu Anshen Formula, this study was to prepare the essential oil into liposomes. In this experiment, the method for the determination of encapsulation efficiency of liposomes was established by ultraviolet spectrophotometer and dextran gel column. The encapsulation efficiency and particle size of liposomes were used as evaluation indexes for single factor investigation and Box-Behnken design-response surface method was used to optimize the design. Then the optimal formulation of volatile oil liposome was characterized using methyleugenol, elemin, ß-asarone and α-asarone as index components. Finally, the in vitro transdermal properties of liposomes were studied by modified Franz diffusion cell. The results showed that the concentration of lecithin, the mass ratio of lecithin to volatile oil, and the stirring speed were the three most significant factors affecting the liposome preparation. The optimum formulation of volatile oil liposome was as follows: the concentration of lecithin was 7 g·L~(-1); mass ratio of lecithin to volatile oil was 5∶1; and the stirring speed was 330 r·min~(-1). Under such conditions, the prepared liposomes had blue emulsion light, good fluidity, half translucent, with particle size of(102.6±0.35) nm, Zeta potential of(-17.8±0.306) mV, permeability of(1.67±1.01)%, and stable property if liposome was stored at 4 ℃. 24 h after percutaneous administration, the cumulative osmotic capacity per unit time was(30.485 2±1.238 9),(34.794 8±0.928 3),(26.677 1±1.171 7),(3.066 2±0.175 3) µg·cm~(-2)respectively for methyleugenol, elemin, ß-asarone and α-asarone. In vitro transdermal behaviors of methyleugenol, elemin, ß-asarone and α-asarone in liposomes were all consistent with Higuchi equation. The prepared volatile oil liposomes met the relevant quality requirements, providing a reference for further research on preparation of multi-component Chinese medicine essential oil liposomes.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Liposomas , Aceites Volátiles/análisis , Administración Cutánea , Tamaño de la Partícula , Solubilidad
17.
Arch Biochem Biophys ; 646: 72-79, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29621521

RESUMEN

The deregulation of Bcl2L12 expression in cancer has been recognized, but the causative factors are unknown. Histone acetyltransferases (HAT) play critical roles in the regulation gene transcription. This study tests a hypothesis that the aberrant activities of HAT induce deregulation of Bcl2L12 in nasopharyngeal cancer (NPC). In this study, human NPC tissues were collected from the clinic. The expression of Bcl2L12 and HATs in NPC cells was analyzed by real time RT-PCR and Western blotting. NPC cell apoptosis was analyzed by flow cytometry. The results showed that by screening the subtypes of HAT, the levels of HAT1 were uniquely higher in NPC as compared with non-cancer nasopharyngeal tissue. The levels of Bcl2L12 in NPC cells were positively correlated with HAT1. HAT1 involved in the STAT5 binding to the Bcl2L12 promoter. HAT1 increased the expression of Bcl2L12. Bcl2L12 mediated the effects of HAT1 on suppressing NPC cell apoptosis. Absorption of the HAT1 shRNA plasmid-carrying liposomes induced NPC cell apoptosis. In conclusion, inhibition of HAT1 can induce NPC cell apoptosis via increasing Bcl2L12 expression, which can be a potential therapy for NPC treatment.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Proteínas Musculares/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Adulto , Apoptosis/genética , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Histona Acetiltransferasas/genética , Humanos , Liposomas/metabolismo , Masculino , Persona de Mediana Edad , Proteínas Musculares/genética , Neoplasias Nasofaríngeas/genética , Plásmidos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Interferente Pequeño/genética , Factor de Transcripción STAT5/metabolismo , Regulación hacia Arriba
18.
Biomacromolecules ; 19(6): 1966-1978, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29425448

RESUMEN

The currently used hemoperfusion adsorbents such as activated carbon and ion-exchange resin show dissatisfactory hemocompatibility, and a large dose of injected heparin leads to the increasing cost and the risk of systematic bleeding. Natural polysaccharide adsorbents commonly have good biocompatibility, but their application is restricted by the poor mechanical strength and low content of functional groups. Herein, we developed an efficient, self-anticoagulant and blood compatible hemoperfusion adsorbent by imitating the structure and functional groups of heparin. Carrageenan and poly(acrylic acid) (PAA) cross-linked networks were built up by the combination of phase inversion of carrageenan and post-cross-linking of AA, and the formed dual-network structure endowed the beads with improved mechanical properties and controlled swelling ratios. The beads exhibited low protein adsorption amounts, low hemolysis ratios, low cytotoxicity, and suppressed complement activation and contact activation levels. Especially, the activated partial thromboplastin time, prothrombin time, and thrombin time of the gel beads were prolonged over 13, 18, and 4 times than those of the control. The self-anticoagulant and biocompatible beads showed good adsorption capacities toward exogenous toxins (560.34 mg/g for heavy metal ions) and endogenous toxins (14.83 mg/g for creatinine, 228.16 mg/g for bilirubin, and 18.15 mg/g for low density lipoprotein (LDL)), thus, highlighting their potential usage for safe and efficient blood purification.


Asunto(s)
Anticoagulantes/farmacología , Materiales Biomiméticos/química , Carragenina/química , Hemoperfusión/instrumentación , Heparina/química , Resinas Acrílicas/química , Anticoagulantes/química , Materiales Biomiméticos/farmacología , Activación de Complemento/efectos de los fármacos , Cobre/química , Cobre/aislamiento & purificación , Geles/química , Hemoperfusión/métodos , Humanos , Lipoproteínas LDL/química , Ensayo de Materiales/métodos , Microscopía Electrónica de Rastreo , Tiempo de Tromboplastina Parcial , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Tiempo de Trombina , Adulto Joven
19.
J Nanosci Nanotechnol ; 18(4): 2325-2329, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442899

RESUMEN

Gliomas are the most common type of intracranial malignant tumor; however, current treatment approaches are often ineffective due to limited penetration of genes or drugs through the blood-brain barrier (BBB). Here we describe the synthesis of gelatin-siloxane nanoparticles (GS NPs) as candidate gene carriers through a two-step sol-gel process. To increase the efficiency of glioma targeting, human immunodeficiency virus-derived Tat, tumor-targeting aptamer (TTA)1, and polyethylene glycol (PEG) were conjugated to the GS NPs to generate Tat-TTA1-PEG-GS NPs. In vivo imaging revealed that these modified NPs not only evaded capture by the reticulo-endothelial system, but were able to cross the BBB to reach gliomas. Our results suggest that Tat-TTA1-PEG-GS NPs are a new type of non-viral vector that can deliver therapeutic DNA or drugs for highly efficient glioma treatment.


Asunto(s)
Aptámeros de Nucleótidos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Gelatina/administración & dosificación , Glioma/tratamiento farmacológico , Nanopartículas , Barrera Hematoencefálica , Línea Celular Tumoral , Humanos , Péptidos , Polietilenglicoles , Siloxanos
20.
Phys Chem Chem Phys ; 17(38): 25114-22, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26349673

RESUMEN

The assembly conformation and kinetics of phosphatidylethanolamine (PE) lipids are the key to their membrane curvatures and activities, such as exocytosis, endocytosis and Golgi membrane fusion. In the current study, a polarization and frequency resolved (bandwidth ≈ 1 cm(-1)) picosecond sum frequency generation (SFG) system was developed to characterize phosphatidylethanolamine monolayers. In addition to obtaining π-A isotherms and Brewster angle microscopy (BAM) images, the conformational changes and assembly behaviors of phosphatidylethanolamine molecules are investigated by analyzing the SFG spectra collected at various surface pressures (SPs). The compression kinetics and relaxation kinetics of phosphatidylethanolamine monolayers are also reported. The conformational changes of PE molecules during the monolayer compression are separated into several stages: reorientation of the head group PO2(-) in the beginning of the liquid-expanded (LE) phase, conformational changes of head group alkyl chains in the LE phase, and conformational changes of tail group alkyl chains in the LE-liquid condensed (LE-LC) phase. Such an understanding may help researchers to effectively control the lipid molecular conformation and membrane curvatures during the exocytosis/endocytosis processes.


Asunto(s)
Fosfatidiletanolaminas/química , Cinética , Microscopía , Presión , Propiedades de Superficie , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA