Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Psychol Med ; 53(16): 7735-7745, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37309913

RESUMEN

BACKGROUND: A blunted hypothalamic-pituitary-adrenal (HPA) axis response to acute stress is associated with psychiatric symptoms. Although the prefrontal cortex and limbic areas are important regulators of the HPA axis, whether the neural habituation of these regions during stress signals both blunted HPA axis responses and psychiatric symptoms remains unclear. In this study, neural habituation during acute stress and its associations with the stress cortisol response, resilience, and depression were evaluated. METHODS: Seventy-seven participants (17-22 years old, 37 women) were recruited for a ScanSTRESS brain imaging study, and the activation changes between the first and last stress blocks were used as the neural habituation index. Meanwhile, participants' salivary cortisol during test was collected. Individual-level resilience and depression were measured using questionnaires. Correlation and moderation analyses were conducted to investigate the association between neural habituation and endocrine data and mental symptoms. Validated analyses were conducted using a Montreal Image Stress Test dataset in another independent sample (48 participants; 17-22 years old, 24 women). RESULTS: Neural habituation of the prefrontal cortex and limbic area was negatively correlated with cortisol responses in both datasets. In the ScanSTRESS paradigm, neural habituation was both positively correlated with depression and negatively correlated with resilience. Moreover, resilience moderated the relationship between neural habituation in the ventromedial prefrontal cortex and cortisol response. CONCLUSIONS: This study suggested that neural habituation of the prefrontal cortex and limbic area could reflect motivation dysregulation during repeated failures and negative feedback, which might further lead to maladaptive mental states.


Asunto(s)
Hidrocortisona , Resiliencia Psicológica , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Hidrocortisona/análisis , Sistema Hipotálamo-Hipofisario , Habituación Psicofisiológica/fisiología , Estrés Psicológico/psicología , Sistema Hipófiso-Suprarrenal , Saliva/química
2.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33408178

RESUMEN

Coxsackievirus A5 (CV-A5) has recently emerged as a main hand, foot, and mouth disease (HFMD) pathogen. Following a large-scale vaccination campaign against enterovirus 71 (EV-71) in China, the number of HFMD-associated cases with EV-71 was reduced, especially severe and fatal cases. However, the total number of HFMD cases remains high, as HFMD is also caused by other enterovirus serotypes. A multivalent HFMD vaccine containing 4 or 6 antigens of enterovirus serotypes is urgently needed. A formaldehyde-inactivated CV-A5 vaccine derived from Vero cells was used to inoculate newborn Kunming mice on days 3 and 10. The mice were challenged on day 14 with a mouse-adapted CV-A5 strain at a dose that was lethal for 14-day-old suckling mice. Within 14 days postchallenge, groups of mice immunized with three formulations, empty particles (EPs), full particles (FPs), and a mixture of the EP and FP vaccine candidates, all survived, while 100% of the mock-immunized mice died. Neutralizing antibodies (NtAbs) were detected in the sera of immunized mice, and the NtAb levels were correlated with the survival rate of the challenged mice. The virus loads in organs were reduced, and pathological changes and viral protein expression were weak or not observed in the immunized mice compared with those in alum-inoculated control mice. Another interesting finding was the identification of CV-A5 dense particles (DPs), facilitating morphogenesis study. These results demonstrated that the Vero cell-adapted CV-A5 strain is a promising vaccine candidate and could be used as a multivalent HFMD vaccine component in the future.IMPORTANCE The vaccine candidate strain CV-A5 was produced with a high infectivity titer and a high viral particle yield. Three particle forms, empty particles (EPs), full particles (FPs), and dense particles (DPs), were obtained and characterized after purification. The immunogenicities of EP, FP, and the EP and FP mixture were evaluated in mice. Mouse-adapted CV-A5 was generated as a challenge strain to infect 14-day-old mice. An active immunization challenge mouse model was established to evaluate the efficacy of the inactivated vaccine candidate. This animal model mimics vaccination, similar to immune responses of the vaccinated. The animal model also tests protective efficacy in response to the vaccine against the disease. This work is important for the preparation of multivalent vaccines against HFMD caused by different emerging strains.


Asunto(s)
Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Vacunación/métodos , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Modelos Animales de Enfermedad , Enfermedad de Boca, Mano y Pie/virología , Ratones , Serogrupo , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Células Vero , Carga Viral , Vacunas Virales/inmunología , Virión/inmunología
3.
Nano Lett ; 21(22): 9551-9559, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34738816

RESUMEN

Hollow mesoporous organosilica nanoparticles (HMONs) are widely considered as a promising drug nanocarrier, but the loaded drugs can easily leak from HMONs, resulting in the considerably decreased drug loading capacity and increased biosafety risk. This study reports the smart use of core/shell Fe3O4/Gd2O3 (FG) hybrid nanoparticles as a gatekeeper to block the pores of HMONs, which can yield an unreported large loading content (up to 20.4%) of DOX. The conjugation of RGD dimer (R2) onto the DOX-loaded HMON with FG capping (D@HMON@FG@R2) allowed for active tumor-targeted delivery. The aggregated FG in D@HMON@FG@R2 could darken the normal tissue surrounding the tumor due to the high r2 value (253.7 mM-1 s-1) and high r2/r1 ratio (19.13), and the intratumorally released FG as a result of reducibility-triggered HMON degradation could brighten the tumor because of the high r1 value (20.1 mM-1 s-1) and low r2/r1 ratio (7.01), which contributed to high contrast magnetic resonance imaging (MRI) for guiding highly efficient tumor-specific DOX release and chemotherapy.


Asunto(s)
Nanopartículas , Fototerapia , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Imagen por Resonancia Magnética , Nanopartículas/uso terapéutico , Fototerapia/métodos , Polímeros
4.
Virus Res ; 328: 199074, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805409

RESUMEN

Hand, foot and mouth disease (HFMD) is caused by a variety of serotypes in species A of the Enterovirus genus, including recently re-emerged Coxsackievirus A2 (CV-A2), CV-A4 and CV-A5. For development of diagnostic reagents, for surveillance, and the development of multivalent vaccines against HFMD, the antigenicity of HFMD-associated enteroviruses warrants investigation. The purified virions of CV-A4 were inoculated into Balb/c mice and hybridomas were obtained secreting monoclonal antibodies (mAbs) directed against CV-A4 and cross-reacting with other closely related species A enteroviruses. The mAbs were characterized by ELISA, Western blotting and in vitro neutralizing assays. The majority of mAbs was non-neutralizing, with only 2% of the mAbs neutralizing CV-A4 specifically. Most of mAbs bound to linear VP1 epitopes of CV-A4. Interestingly, four types of mAbs were obtained which bound specifically to CV-A4 or were broadly to CV-A4/-A2, CV-A4/-A5 and CV-A4/-A2/-A5, respectively. Mapping with overlapping or single-amino-acid mutant peptides revealed that the four types of mAbs all bound to the first 15 amino acids at the N-terminus of the VP1. This region of picornaviruses is functionally important as it is involved in uncoating and releasing of viral RNA into the cytosol. The binding footprints of four type mAbs are composed of conserved and variable residues and are different from each other. The newly discovered broadly cross-reactive mAbs reflect the high homology of CV-A4/ CV-A2/CV-A5. The results also demonstrate that it is possible and beneficial to develop the diagnostic reagents to detect rapidly the main pathogens of enteroviruses associated with HFMD cause by CV-A4/CV-A2/CV-A5.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Ratones , Anticuerpos Monoclonales , Epítopos , Enterovirus/genética , Antígenos Virales , China/epidemiología , Enterovirus Humano A/genética
5.
BMC Med Genomics ; 14(1): 279, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819054

RESUMEN

BACKGROUND: Hand, foot and mouth disease (HFMD) is caused by a variety of enterovirus serotypes and the etiological spectrum worldwide has changed since a large scale of outbreaks occurred in 1997. METHODS: A large number of clinical specimens of HFMD patients were collected in Xiangyang and genotyping was performed by qRT-PCR, conventional PCR amplification and sequencing. Among the 146 CV-A5 detected cases, the complete genome sequences of representative strains were determined for genotyping and for recombination analysis. RESULTS: It was found that CV-A5 was one of the six major serotypes that caused the epidemic from October 2016 to December 2017. Phylogenetic analyses based on the VP1 sequences showed that these CV-A5 belonged to the genotype D which dominantly circulated in China. Recombination occurred between the CV-A5 and CV-A2 strains with a breakpoint in the 2A region at the nucleotide 3791. CONCLUSIONS: The result may explain the emergence of CV-A5 as one of the major pathogens of HFMD. A multivalent vaccine against HFMD is urgently needed to control the disease and to prevent emerging and spreading of new recombinants.


Asunto(s)
Enterovirus , Epidemias , Enfermedad de Boca, Mano y Pie , China/epidemiología , Enterovirus/genética , Enfermedad de Boca, Mano y Pie/epidemiología , Humanos , Filogenia
6.
Emerg Microbes Infect ; 10(1): 763-773, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33739899

RESUMEN

Coxsackievirus A6 (CV-A6) has been emerging as a major pathogen of hand, foot and mouth disease (HFMD). Study on the pathogenesis of CV-A6 infection and development of vaccines is hindered by a lack of appropriate animal models. Here, we report an actively immunized-challenged mouse model to evaluate the efficacy of a Vero-cell-based, inactivated CV-A6 vaccine candidate. The neonatal Kunming mice were inoculated with a purified, formaldehyde-inactivated CV-A6 vaccine on days 3 and 9, followed by challenging on day 14 with a naturally selected virulent strain at a lethal dose. Within 14 days postchallenge, all mice in the immunized groups survived, while 100% of the Alum-only inoculated mice died. Neutralizing antibodies (NtAbs) were detected in the serum of immunized suckling mice, and the NtAb levels correlated with the survival rate of the challenged mice. The virus loads in organs were reduced, and pathological changes and viral protein expression were weak in the immunized mice compared with those in Alum-only inoculated control mice. Elevated levels of interleukin-4, 6, interferon γ and tumour necrosis factor α were also observed in Alum-only control mice compared with immunized mice. Importantly, the virulent CV-A6 challenge strain was selected quickly and conveniently from a RD cell virus stock characterized with the natural multi-genotypes. The virulent determinants were mapped to V124M and I242 V at VP1. Together, our results indicated that this actively immunized mouse model is invaluable for future studies to develop multivalent vaccines containing the major component of CV-A6 against HFMD.


Asunto(s)
Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/virología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Enterovirus Humano A/genética , Enfermedad de Boca, Mano y Pie/genética , Enfermedad de Boca, Mano y Pie/inmunología , Humanos , Inmunización , Interleucina-4/genética , Interleucina-4/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Ratones , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Células Vero , Vacunas Virales/administración & dosificación
7.
Sci Rep ; 10(1): 20909, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262488

RESUMEN

Coxsackievirus A6 (CV-A6) and Coxsackievirus A10 (CV-A10) have been emerging as the prevailing serotypes and overtaking Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16) in most areas as main pathogens of hand, foot and mouth disease (HFMD) in China since 2013. To investigate whole etiological spectrum following EV-A71 vaccination of approximate 40,000 infants and young children in Xiangyang, enteroviruses were serotyped in 4415 HFMD cases from October 2016 to December 2017 using Real Time and conventional PCR and cell cultures. Of the typeable 3201 specimen, CV-A6 was the predominant serotype followed by CV-A16, CV-A10, CV-A5, CV-A2 and EV-A71 with proportions of 59.54%, 15.31%, 11.56%, 4.56%, 3.78% and 3.03%, respectively. Other 12 minor serotypes were also detected. The results demonstrated that six major serotypes of enteroviruses were co-circulating, including newly emerged CV-A2 and CV-A5. A dramatic decrease of EV-A71 cases was observed, whereas the total cases remained high. Multivalent vaccines against major serotypes are urgently needed for control of HFMD.


Asunto(s)
Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Vacunas Virales/administración & dosificación , Animales , Preescolar , China/epidemiología , Chlorocebus aethiops , Femenino , Humanos , Lactante , Masculino , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA