Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(24): 10624-10628, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32460497

RESUMEN

Phage display biopanning with Illumina next-generation sequencing (NGS) is applied to reveal insights into peptide-based adhesion domains for polypropylene (PP). One biopanning round followed by NGS selects robust PP-binding peptides that are not evident by Sanger sequencing. NGS provides a significant statistical base that enables motif analysis, statistics on positional residue depletion/enrichment, and data analysis to suppress false-positive sequences from amplification bias. The selected sequences are employed as water-based primers for PP-metal adhesion to condition PP surfaces and increase adhesive strength by 100% relative to nonprimed PP.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Ciencia de los Materiales , Polipropilenos/química , Propiedades de Superficie
2.
Analyst ; 145(10): 3490-3494, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32285085

RESUMEN

The employment of type-I pyrethroids for airplane disinfection in recent years underlines the necessity to develop sensing schemes for the rapid detection of these pesticides directly at the point-of-use. Antibody-gated indicator-releasing materials were thus developed and implemented with test strips for lateral-flow assay-based analysis employing a smartphone for readout. Besides a proper matching of pore sizes and gating macromolecules, the functionalization of both the material's outer surface as well as the strips with PEG chains enhanced system performance. This simple assay allowed for the detection of permethrin as a target molecule at concentrations down to the lower ppb level in less than 5 minutes.


Asunto(s)
Técnicas Biosensibles/métodos , Piretrinas/análisis , Anticuerpos/química , Polietilenglicoles/química , Piretrinas/química , Factores de Tiempo
3.
Angew Chem Int Ed Engl ; 58(7): 1960-1964, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30452103

RESUMEN

Functional sequences of precision polymers based on thiolactone/Michael chemistry are identified from a large one-bead one-compound library. Single-bead readout by MALDI-TOF MS/MS identifies sequences that host m-THPC that is a second generation photo-sensitizer drug. The corresponding Tla/Michael-PEG conjugates make m-THPC available in solution and drug payload as well as drug release kinetics can be fine-tuned by the precision segment.


Asunto(s)
Lactonas/química , Polímeros/química , Compuestos de Sulfhidrilo/química , Cinética , Espectrometría de Masas , Estructura Molecular , Fármacos Fotosensibilizantes/química , Porfirinas/química
4.
Biosensors (Basel) ; 10(8)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764236

RESUMEN

The illegal use of explosives by terrorists and other criminals is an increasing issue in public spaces, such as airports, railway stations, highways, sports venues, theaters, and other large buildings. Security in these environments can be achieved by different means, including the installation of scanners and other analytical devices to detect ultra-small traces of explosives in a very short time-frame to be able to take action as early as possible to prevent the detonation of such devices. Unfortunately, an ideal explosive detection system still does not exist, which means that a compromise is needed in practice. Most detection devices lack the extreme analytical sensitivity, which is nevertheless necessary due to the low vapor pressure of nearly all explosives. In addition, the rate of false positives needs to be virtually zero, which is also very difficult to achieve. Here we present an immunosensor system based on kinetic competition, which is known to be very fast and may even overcome affinity limitation, which impairs the performance of many traditional competitive assays. This immunosensor consists of a monolithic glass column with a vast excess of immobilized hapten, which traps the fluorescently labeled antibody as long as no explosive is present. In the case of the explosive 2,4,6-trinitrotoluene (TNT), some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and chip-based mixing-devices and flow-cells. The system achieved limits of detection of 1 pM (1 ppt) of the fluorescent label and around 100 pM (20 ppt) of TNT. The total assay time is less than 8 min. A cross-reactivity test with 5000 pM solutions showed no signal by pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). This immunosensor belongs to the most sensitive and fastest detectors for TNT with no significant cross-reactivity by non-related compounds. The consumption of the labeled antibody is surprisingly low: 1 mg of the reagent would be sufficient for more than one year of continuous biosensor operation.


Asunto(s)
Técnicas Biosensibles , Sustancias Explosivas/análisis , Trinitrotolueno/análisis , Anticuerpos , Anhídridos Maleicos , Tetranitrato de Pentaeritritol , Polietilenglicoles , Triazinas
5.
J Control Release ; 295: 130-139, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30537486

RESUMEN

In glioblastoma, the benefit from temozolomide chemotherapy is largely limited to a subgroup of patients (30-35%) with tumors exhibiting methylation of the promoter region of the O6-methylguanine-DNA methyltransferase (MGMT) gene. In order to allow more patients to benefit from this treatment, we explored magnetic resonance image-guided microbubble-enhanced low-intensity pulsed focused ultrasound (LIFU) to transiently open the blood-brain barrier and deliver a first-in-class liposome-loaded small molecule MGMT inactivator in mice bearing temozolomide-resistant gliomas. We demonstrate that a liposomal O6-(4-bromothenyl)guanine (O6BTG) derivative can efficiently target MGMT, thereby sensitizing murine and human glioma cells to temozolomide in vitro. Furthermore, we report that image-guided LIFU mediates the delivery of the stable liposomal MGMT inactivator in the tumor region resulting in potent MGMT depletion in vivo. Treatment with this new liposomal MGMT inactivator facilitated by LIFU-mediated blood-brain barrier opening reduced tumor growth and significantly prolonged survival of glioma-bearing mice, when combined with temozolomide chemotherapy. Exploring this novel combined approach in the clinic to treat glioblastoma patients with MGMT promoter-unmethylated tumors is warranted.


Asunto(s)
Antineoplásicos Alquilantes/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Dacarbazina/administración & dosificación , Glioblastoma/tratamiento farmacológico , Guanina/análogos & derivados , Liposomas/administración & dosificación , Animales , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Dacarbazina/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/uso terapéutico , Glioblastoma/diagnóstico por imagen , Glioblastoma/metabolismo , Guanina/administración & dosificación , Guanina/uso terapéutico , Liposomas/uso terapéutico , Imagen por Resonancia Magnética/métodos , Ratones , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Ondas Ultrasónicas
6.
Int J Pharm ; 536(1): 388-396, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29198811

RESUMEN

Liposomal delivery is a well-established approach to increase the therapeutic index of drugs, mainly in the field of cancer chemotherapy. Here, we report the preparation and characterization of a new liposomal formulation of a derivative of lomeguatrib, a potent O6-methylguanine-DNA methyltransferase (MGMT) inactivator. The drug had been tested in clinical trials to revert chemoresistance, but was associated with a low therapeutic index. A series of lomeguatrib conjugates with distinct alkyl chain lengths - i.e. C12, C14, C16, and C18 - was synthesized, and the MGMT depleting activity as well as cytotoxicity were determined on relevant mouse and human glioma cell lines. Drug-containing liposomes were prepared and characterized in terms of loading and in vitro release kinetics. The lipophilic lomeguatrib conjugates did not exert cytotoxic effects at 5 µM in the mouse glioma cell line and exhibited a similar MGMT depleting activity pattern as lomeguatrib. Overall, drug loading could be improved by up to 50-fold with the lipophilic conjugates, and the slowest leakage was achieved with the C18 derivative. The present data show the applicability of lipophilic lomeguatrib derivatization for incorporation into liposomes, and identify the C18 derivative as the lead compound for in vivo studies.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Glioma/tratamiento farmacológico , Liposomas/química , Polietilenglicoles/química , Purinas/química , Purinas/farmacología , Animales , Línea Celular Tumoral , Guanina/análogos & derivados , Guanina/química , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA