Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Cell ; 29(8): 1907-1926, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28733420

RESUMEN

Lignification of cell wall appositions is a conserved basal defense mechanism in the plant innate immune response. However, the genetic pathway controlling defense-induced lignification remains unknown. Here, we demonstrate the Arabidopsis thaliana SG2-type R2R3-MYB transcription factor MYB15 as a regulator of defense-induced lignification and basal immunity. Loss of MYB15 reduces the content but not the composition of defense-induced lignin, whereas constitutive expression of MYB15 increases lignin content independently of immune activation. Comparative transcriptional and metabolomics analyses implicate MYB15 as necessary for the defense-induced synthesis of guaiacyl lignin and the basal synthesis of the coumarin metabolite scopoletin. MYB15 directly binds to the secondary wall MYB-responsive element consensus sequence, which encompasses the AC elements, to drive lignification. The myb15 and lignin biosynthetic mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with defense-induced lignin having a major role in basal immunity. A scopoletin biosynthetic mutant also shows increased susceptibility independently of immune activation, consistent with a role in preformed defense. Our results support a role for phenylalanine-derived small molecules in preformed and inducible Arabidopsis defense, a role previously dominated by tryptophan-derived small molecules. Understanding the regulatory network linking lignin biosynthesis to plant growth and defense will help lignin engineering efforts to improve the production of biofuels and aromatic industrial products as well as increase disease resistance in energy and agricultural crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Lignina/metabolismo , Inmunidad de la Planta , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Lignina/biosíntesis , Fenoles/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Pseudomonas syringae/fisiología , Escopoletina/farmacología , Homología de Secuencia de Aminoácido , Solubilidad , Factores de Transcripción/genética
2.
Plant Cell ; 23(7): 2708-24, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21742988

RESUMEN

Syringyl lignin, an important component of the secondary cell wall, has traditionally been considered to be a hallmark of angiosperms because ferns and gymnosperms in general lack lignin of this type. Interestingly, syringyl lignin was also detected in Selaginella, a genus that represents an extant lineage of the most basal of the vascular plants, the lycophytes. In angiosperms, syringyl lignin biosynthesis requires the activity of ferulate 5-hydroxylase (F5H), a cytochrome P450-dependent monooxygenase, and caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT). Together, these two enzymes divert metabolic flux from the biosynthesis of guaiacyl lignin, a lignin type common to all vascular plants, toward syringyl lignin. Selaginella has independently evolved an alternative lignin biosynthetic pathway in which syringyl subunits are directly derived from the precursors of p-hydroxyphenyl lignin, through the action of a dual specificity phenylpropanoid meta-hydroxylase, Sm F5H. Here, we report the characterization of an O-methyltransferase from Selaginella moellendorffii, COMT, the coding sequence of which is clustered together with F5H at the adjacent genomic locus. COMT is a bifunctional phenylpropanoid O-methyltransferase that can methylate phenylpropanoid meta-hydroxyls at both the 3- and 5-position and function in concert with F5H in syringyl lignin biosynthesis in S. moellendorffii. Phylogenetic analysis reveals that Sm COMT, like F5H, evolved independently from its angiosperm counterparts.


Asunto(s)
Lignina/biosíntesis , Metiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Selaginellaceae/enzimología , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Pared Celular/ultraestructura , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Lignina/química , Magnoliopsida/enzimología , Metiltransferasas/clasificación , Metiltransferasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Estructura Terciaria de Proteína , Selaginellaceae/anatomía & histología , Alineación de Secuencia , Distribución Tisular
3.
Plant Cell ; 22(5): 1620-32, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20511296

RESUMEN

Defects in phenylpropanoid biosynthesis arising from deficiency in hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase (HCT) or p-coumaroyl shikimate 3'-hydroxylase (C3'H) lead to reduced lignin, hyperaccumulation of flavonoids, and growth inhibition in Arabidopsis thaliana. It was previously reported that flavonoid-mediated inhibition of auxin transport is responsible for growth reduction in HCT-RNA interference (RNAi) plants. This conclusion was based on the observation that simultaneous RNAi silencing of HCT and chalcone synthase (CHS), an enzyme essential for flavonoid biosynthesis, resulted in less severe dwarfing than silencing of HCT alone. In an attempt to extend these results using a C3'H mutant (ref8) and a CHS null mutant (tt4-2), we found that the growth phenotype of the ref8 tt4-2 double mutant, which lacks flavonoids, is indistinguishable from that of ref8. Moreover, using RNAi, we found that the relationship between HCT silencing and growth inhibition is identical in both the wild type and tt4-2. We conclude from these results that the growth inhibition observed in HCT-RNAi plants and the ref8 mutant is independent of flavonoids. Finally, we show that expression of a newly characterized gene bypassing HCT and C3'H partially restores both lignin biosynthesis and growth in HCT-RNAi plants, demonstrating that a biochemical pathway downstream of coniferaldehyde, probably lignification, is essential for normal plant growth.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Flavonoides/biosíntesis , Lignina/biosíntesis , Aciltransferasas/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Flavonoides/química , Lignina/química , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Mutación/genética , Fenoles/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Interferencia de ARN , Selaginellaceae/enzimología , Solubilidad , Transgenes/genética
4.
Plant Cell ; 22(4): 1033-45, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20371642

RESUMEN

Phenotypic convergence in unrelated lineages arises when different organisms adapt similarly under comparable selective pressures. In an apparent example of this process, syringyl lignin, a fundamental building block of plant cell walls, occurs in two major plant lineages, lycophytes and angiosperms, which diverged from one another more than 400 million years ago. Here, we show that this convergence resulted from independent recruitment of lignin biosynthetic cytochrome P450-dependent monooxygenases that route cell wall monomers through related but distinct pathways in the two lineages. In contrast with angiosperms, in which syringyl lignin biosynthesis requires two phenylpropanoid meta-hydroxylases C3'H and F5H, the lycophyte Selaginella employs one phenylpropanoid dual meta-hydroxylase to bypass several steps of the canonical lignin biosynthetic pathway. Transgenic expression of the Selaginella hydroxylase in Arabidopsis thaliana dramatically reroutes its endogenous lignin biosynthetic pathway, yielding a novel lignin composition not previously identified in nature. Our findings demonstrate a unique case of convergent evolution via distinct biochemical strategies and suggest a new way to genetically reconstruct lignin biosynthesis in higher plants.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Evolución Molecular , Lignina/biosíntesis , Proteínas de Plantas/metabolismo , Selaginellaceae/genética , Arabidopsis/enzimología , Arabidopsis/genética , Pared Celular/química , Sistema Enzimático del Citocromo P-450/genética , Prueba de Complementación Genética , Espectroscopía de Resonancia Magnética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , Selaginellaceae/enzimología
5.
Plant J ; 64(6): 898-911, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21143672

RESUMEN

The presence of the phenylpropanoid polymer lignin in plant cell walls impedes breakdown of polysaccharides to the fermentable sugars that are used in biofuel production. Genetically modified plants with altered lignin properties hold great promise to improve biomass degradability. Here, we describe the generation of a new type of lignin enriched in 5-hydroxy-guaiacyl units by over-expressing ferulate 5-hydroxylase in a line of Arabidopsis lacking caffeic acid O-methyltransferase. The lignin modification strategy had a profound impact on plant growth and development and cell-wall properties, and resulted in male sterility due to complete disruption of formation of the pollen wall. The modified plants showed significantly improved cell-wall enzymatic saccharification efficiency without a reduction in post-harvest biomass yield despite the alterations in the overall growth morphology. This study demonstrated the plasticity of lignin polymerization in terms of incorporation of unusual monomers that chemically resemble conventional monomers, and also revealed the link between the biosynthetic pathways of lignin and the pollen wall-forming sporopollenin.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Pared Celular/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Lignina/biosíntesis , Polen/crecimiento & desarrollo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Biomasa , Pared Celular/ultraestructura , Sistema Enzimático del Citocromo P-450/genética , Metiltransferasas/genética , Infertilidad Vegetal , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Polen/ultraestructura
6.
Proc Natl Acad Sci U S A ; 105(22): 7887-92, 2008 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-18505841

RESUMEN

Lycophytes arose in the early Silurian ( approximately 400 Mya) and represent a major lineage of vascular plants that has evolved in parallel with the ferns, gymnosperms, and angiosperms. A hallmark of vascular plants is the presence of the phenolic lignin heteropolymer in xylem and other sclerified cell types. Although syringyl lignin is often considered to be restricted in angiosperms, it has been detected in lycophytes as well. Here we report the characterization of a cytochrome P450-dependent monooxygenase from the lycophyte Selaginella moellendorffii. Gene expression data, cross-species complementation experiments, and in vitro enzyme assays indicate that this P450 is a ferulic acid/coniferaldehyde/coniferyl alcohol 5-hydroxylase (F5H), and is capable of diverting guaiacyl-substituted intermediates into syringyl lignin biosynthesis. Phylogenetic analysis indicates that the Selaginella F5H represents a new family of plant P450s and suggests that it has evolved independently of angiosperm F5Hs.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Lignina/biosíntesis , Oxigenasas de Función Mixta/química , Proteínas de Plantas/química , Selaginellaceae/enzimología , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/clasificación , Sistema Enzimático del Citocromo P-450/genética , Prueba de Complementación Genética , Lignina/química , Oxigenasas de Función Mixta/clasificación , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Mutación , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Especificidad por Sustrato
7.
Plant J ; 60(5): 771-82, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19682296

RESUMEN

The initial reactions of the phenylpropanoid pathway convert phenylalanine to p-coumaroyl CoA, a branch point metabolite from which many phenylpropanoids are made. Although the second enzyme of this pathway, cinnamic acid 4-hydroxylase (C4H), is well characterized, a mutant for the gene encoding this enzyme has not yet, to our knowledge, been identified, presumably because knock-out mutations in this gene would have severe phenotypes. This work describes the characterization of an allelic series of Arabidopsis reduced epidermal fluorescence 3 (ref3) mutants, each of which harbor mis-sense mutations in C4H (At2g30490). Heterologous expression of the mutant proteins in Escherichia coli yields enzymes that exhibit P420 spectra, indicative of mis-folded proteins, or have limited ability to bind substrate, indicating that the mutations we have identified affect protein stability and/or enzyme function. In agreement with the early position of C4H in phenylpropanoid metabolism, ref3 mutant plants accumulate decreased levels of several different classes of phenylpropanoid end-products, and exhibit reduced lignin deposition and altered lignin monomer content. Furthermore, these plants accumulate a novel hydroxycinnamic ester, cinnamoylmalate, which is not found in the wild type. The decreased C4H activity in ref3 also causes pleiotropic phenotypes, including dwarfism, male sterility and the development of swellings at branch junctions. Together, these observations indicate that C4H function is critical to the normal biochemistry and development of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mutación Missense , Transcinamato 4-Monooxigenasa/genética , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiología , Mapeo Cromosómico , Escherichia coli/genética , Fertilidad/genética , Lignina/metabolismo , Malatos/metabolismo , Polen/enzimología , Polen/genética , Polen/crecimiento & desarrollo , Pliegue de Proteína , Transcinamato 4-Monooxigenasa/química , Transcinamato 4-Monooxigenasa/fisiología
8.
New Phytol ; 187(2): 273-285, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20642725

RESUMEN

SUMMARY: Lignin, a phenolic polymer derived mainly from hydroxycinnamyl alcohols, is ubiquitously present in tracheophytes. The development of lignin biosynthesis has been considered to be one of the key factors that allowed land plants to flourish in terrestrial ecosystems. Lignin provides structural rigidity for tracheophytes to stand upright, and strengthens the cell wall of their water-conducting tracheary elements to withstand the negative pressure generated during transpiration. In this review, we discuss a number of aspects regarding the origin and evolution of lignin biosynthesis during land plant evolution, including the establishment of its monomer biosynthetic scaffold, potential precursors to the lignin polymer, as well as the emergence of the polymerization machinery and regulatory system. The accumulated knowledge on the topic, as summarized here, provides us with an evolutionary view on how this complex metabolic system emerged and developed.


Asunto(s)
Evolución Biológica , Lignina/biosíntesis , Plantas/metabolismo , Lignina/química
9.
Plant J ; 54(4): 569-81, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18476864

RESUMEN

Lignin, a major component of the cell wall of vascular plants, has long been recognized for its negative impact on forage quality, paper manufacturing, and, more recently, cellulosic biofuel production. Over the last two decades, genetic and biochemical analyses of brown midrib mutants of maize, sorghum and related grasses have advanced our understanding of the relationship between lignification and forage digestibility. This work has also inspired genetic engineering efforts aimed at generating crops with altered lignin, with the expectation that these strategies would enhance forage digestibility and/or pulping efficiency. The knowledge gained from these bioengineering efforts has greatly improved our understanding of the optimal lignin characteristics required for various applications of lignocellulosic materials while also contributing to our understanding of the lignin biosynthetic pathway. The recent upswing of interest in cellulosic biofuel production has become the new focus of lignin engineering. Populus trichocarpa and Brachypodium distachyon are emerging as model systems for energy crops. Lignin research on these systems, as well as on a variety of proposed energy crop species, is expected to shed new light on lignin biosynthesis and its regulation in energy crops, and lead to rational genetic engineering approaches to modify lignin for improved biofuel production.


Asunto(s)
Biomasa , Lignina/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Lignina/química , Plantas Modificadas Genéticamente/genética , Poaceae/genética , Poaceae/crecimiento & desarrollo , Poaceae/metabolismo , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo
10.
Curr Opin Biotechnol ; 19(2): 166-72, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18403196

RESUMEN

Ethanol and other biofuels produced from lignocellulosic biomass represent a renewable, more carbon-balanced alternative to both fossil fuels and corn-derived or sugarcane-derived ethanol. Unfortunately, the presence of lignin in plant cell walls impedes the breakdown of cell wall polysaccharides to simple sugars and the subsequent conversion of these sugars to usable fuel. Recent advances in the understanding of lignin composition, polymerization, and regulation have revealed new opportunities for the rational manipulation of lignin in future bioenergy crops, augmenting the previous successful approach of manipulating lignin monomer biosynthesis. Furthermore, recent studies on lignin degradation in nature may provide novel resources for the delignification of dedicated bioenergy crops and other sources of lignocellulosic biomass.


Asunto(s)
Fuentes de Energía Bioeléctrica , Celulosa/metabolismo , Ingeniería Genética/métodos , Lignina/metabolismo , Biomasa , Celulosa/química , Lignina/química , Desarrollo de la Planta , Plantas/genética , Plantas/metabolismo , Plantas Modificadas Genéticamente
11.
Curr Opin Biotechnol ; 56: 105-111, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30439673

RESUMEN

Lignin evolved concomitantly with the rise of vascular plants on planet earth ∼450 million years ago. Several iterations of exploiting ancestral phenylpropanoid metabolism for biopolymers occurred prior to lignin that facilitated early plants' adaptation to terrestrial environments. The first true lignin was constructed via oxidative coupling of a number of simple phenylpropanoid alcohols to form a sturdy polymer that supports long-distance water transport. This invention has directly contributed to the dominance of vascular plants in the Earth's flora, and has had a profound impact on the establishment of the rich terrestrial ecosystems as we know them today. Within vascular plants, new lignin traits continued to emerge with expanded biological functions pertinent to host fitness under complex environmental niches. Understanding the chemical and biochemical basis for lignin's evolution in diverse plants therefore offers new opportunities and tools for engineering desirable lignin traits in crops with economic significance.


Asunto(s)
Evolución Biológica , Biotecnología/métodos , Lignina/metabolismo , Vías Biosintéticas/genética , Lignina/química , Haz Vascular de Plantas/metabolismo , Propanoles/metabolismo
12.
Nat Plants ; 5(1): 41-46, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30559416

RESUMEN

Sporopollenin is a ubiquitous and extremely chemically inert biopolymer that constitutes the outer wall of all land-plant spores and pollen grains1. Sporopollenin protects the vulnerable plant gametes against a wide range of environmental assaults, and is considered a prerequisite for the migration of early plants onto land2. Despite its importance, the chemical structure of plant sporopollenin has remained elusive1. Using a newly developed thioacidolysis degradative method together with state-of-the-art solid-state NMR techniques, we determined the detailed molecular structure of pine sporopollenin. We show that pine sporopollenin is primarily composed of aliphatic-polyketide-derived polyvinyl alcohol units and 7-O-p-coumaroylated C16 aliphatic units, crosslinked through a distinctive dioxane moiety featuring an acetal. Naringenin was also identified as a minor component of pine sporopollenin. This discovery answers the long-standing question about the chemical make-up of plant sporopollenin, laying the foundation for future investigations of sporopollenin biosynthesis and for the design of new biomimetic polymers with desirable inert properties.


Asunto(s)
Biopolímeros/química , Carotenoides/química , Espectroscopía de Resonancia Magnética/métodos , Pinus/química , Bioquímica/métodos , Biopolímeros/aislamiento & purificación , Carotenoides/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Flavanonas/química , Liofilización , Hidrólisis , Estructura Molecular , Polen/química , Alcohol Polivinílico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA