Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35216059

RESUMEN

The purpose of this review article is to outline the extended applications of polyurethane (PU)-based nanocomposites incorporated with conductive polymeric particles as well as to condense an outline on the chemistry and fabrication of polyurethanes (PUs). Additionally, we discuss related research trends of PU-based conducting materials for EMI shielding, sensors, coating, films, and foams, in particular those from the past 10 years. PU is generally an electrical insulator and behaves as a dielectric material. The electrical conductivity of PU is imparted by the addition of metal nanoparticles, and increases with the enhancing aspect ratio and ordering in structure, as happens in the case of conducting polymer fibrils or reduced graphene oxide (rGO). Nanocomposites with good electrical conductivity exhibit noticeable changes based on the remarkable electric properties of nanomaterials such as graphene, RGO, and multi-walled carbon nanotubes (MWCNTs). Recently, conducting polymers, including PANI, PPY, PTh, and their derivatives, have been popularly engaged as incorporated fillers into PU substrates. This review also discusses additional challenges and future-oriented perspectives combined with here-and-now practicableness.


Asunto(s)
Nanocompuestos/química , Poliuretanos/química , Conductividad Eléctrica , Grafito/química , Nanotubos de Carbono/química , Polímeros/química
2.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430637

RESUMEN

Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.


Asunto(s)
Grafito , Hidrogeles , Bentonita , Arcilla , Hidrogeles/química , Alcohol Polivinílico/química , Agua/química
3.
Stem Cells ; 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33107705

RESUMEN

In the peripheral nervous system (PNS), proper development of Schwann cells (SCs) contributing to axonal myelination is critical for neuronal function. Impairments of SCs or neuronal axons give rise to several myelin-related disorders, including dysmyelinating and demyelinating diseases. Pathological mechanisms, however, have been understood at the elementary level and targeted therapeutics has remained undeveloped. Here, we identify Fibulin 5 (FBLN5), an extracellular matrix (ECM) protein, as a key paracrine factor of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to control the development of SCs. We show that co-culture with WJ-MSCs or treatment of recombinant FBLN5 promotes the proliferation of SCs through ERK activation, whereas FBLN5-depleted WJ-MSCs do not. We further reveal that during myelination of SCs, FBLN5 binds to Integrin and modulates actin remodeling, such as the formation of lamellipodia and filopodia, through RAC1 activity. Finally, we show that FBLN5 effectively restores the myelination defects of SCs in the zebrafish model of Charcot-Marie-Tooth (CMT) type 1, a representative demyelinating disease. Overall, our data propose human WJ-MSCs or FBLN5 protein as a potential treatment for myelin-related diseases, including CMT.

4.
Int J Biol Macromol ; 271(Pt 2): 132374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754669

RESUMEN

The controlled delivery of the desired bioactive molecules is required to achieve the maximum therapeutic effects with minimum side effects. Biopolymer-based hydrogels are ideal platforms for delivering the desired molecules owing to their superior biocompatibility, biodegradability, and low-immune response. However, the prolonged delivery of the drugs through biopolymer-based hydrogels is restricted due to their weak mechanical stability. We developed mechanically tough and biocompatible hydrogels to address these limitations using carboxymethyl chitosan, sodium alginate, and nanocellulose for sustained drug delivery. The hydrogels were cross-linked through calcium ions to enhance their mechanical strength. Nanocellulose-added hydrogels exhibited improved mechanical strength (Young's modulus; 23.36 â†’ 30.7 kPa, Toughness; 1.39 â†’ 5.65 MJm-3) than pure hydrogels. The composite hydrogels demonstrated increased recovery potential (66.9 â†’ 84.5 %) due to the rapid reformation of damaged polymeric networks. The hydrogels were stable in an aqueous medium and demonstrated reduced swelling potential. The hydrogels have no adverse effects on embryonic murine fibroblast (3 T3), showing their biocompatibility. No bacterial growth was observed in hydrogels-treated groups, indicating their antibacterial characteristics. The sustained drug released was observed from nanocellulose-assisted hydrogel scaffolds compared to the pure polymer hydrogel scaffold. Thus, hydrogels have potential and could be used as a sustained drug carrier.


Asunto(s)
Celulosa , Quitosano , Hidrogeles , Celulosa/química , Celulosa/análogos & derivados , Hidrogeles/química , Ratones , Animales , Quitosano/química , Quitosano/análogos & derivados , Sistemas de Liberación de Medicamentos , Alginatos/química , Materiales Biocompatibles/química , Liberación de Fármacos , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Nanopartículas/química
5.
Int J Biol Macromol ; 265(Pt 2): 131025, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513895

RESUMEN

Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.


Asunto(s)
Quitosano , Nanotubos de Carbono , Humanos , Antibacterianos , Conductividad Eléctrica , Escherichia coli , Hidrogeles/farmacología , Polímeros
6.
Int J Biol Macromol ; 190: 792-800, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34520780

RESUMEN

Multifunctional blend membranes composed of poly (vinyl alcohol) (PVA) and fungal mushroom-derived carboxymethyl chitosan (F-CMCS) were produced using a simple solution casting technique for wound dressing applications. The structural interactions between PVA and F-CMCS were confirmed by Fourier infrared spectroscopy. The crystallinity of the membranes was examined by X-ray diffraction. Field emission scanning electron microscopy confirmed the homogeneity and coarser texture with a porous-like network in the internal structure of the membranes. The hydrophilicity, swelling, and degradation of the fabricated membranes were examined according to the F-CMCS content. The PVA/F-CMCS membrane displayed potential antibacterial activity against Escherichia coli (gram-negative) and Staphylococcus (gram-positive) bacteria. An in vitro cell study of skin fibroblasts and keratinocytes on the PVA/F-CMCS membranes confirmed the biocompatibility. The hemolysis assay demonstrated the hemocompatibility of the developed membranes. The antibacterial, biocompatibility, and good hemolysis in the PVA membrane were influenced by the F-CMCS composition ratio up to 40%. The all-inclusive properties of the PVA/F-CMCS membranes highlight its potential use in wound dressing applications.


Asunto(s)
Vendajes , Quitosano/análogos & derivados , Membranas Artificiales , Alcohol Polivinílico/química , Cicatrización de Heridas , Agaricales/química , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Materiales Biocompatibles/química , Línea Celular , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Fibroblastos/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Ovinos , Piel/patología , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Agua/química , Humectabilidad , Cicatrización de Heridas/efectos de los fármacos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA