Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 1): 130813, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479667

RESUMEN

In this study, an active and intelligent nanofilm for monitoring and maintaining the freshness of pork was developed using ethyl cellulose/gelatin matrix through electrospinning, with the addition of natural purple sweet potato anthocyanin. The nanofilm exhibited discernible color variations in response to pH changes, and it demonstrated a higher sensitivity towards volatile ammonia compared with casting film. Notably, the experimental findings regarding the wettability and pH response performance indicated that the water contact angle between 70° and 85° was more favorable for the smart response of pH sensitivity. Furthermore, the film exhibited desirable antioxidant activities, water vapor barrier properties and also good antimicrobial activities with the incorporation of ε-polylysine, suggesting the potential as a food packaging film. Furthermore, the application preservation outcomes revealed that the pork packed with the nanofilm can prolong shelf life to 6 days, more importantly, a distinct color change aligned closely with the points indicating the deterioration of the pork was observed, changing from light pink (indicating freshness) to light brown (indicating secondary freshness) and then to brownish green (indicating spoilage). Hence, the application of this multifunctional film in intelligent packaging holds great potential for both real-time indication and efficient preservation of the freshness of animal-derived food items.


Asunto(s)
Celulosa/análogos & derivados , Carne de Cerdo , Carne Roja , Porcinos , Animales , Gelatina , Alimentación Animal , Antocianinas , Embalaje de Alimentos , Concentración de Iones de Hidrógeno
2.
Int J Biol Macromol ; 248: 125797, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442510

RESUMEN

In order to efficiently improve the colon-targeted delivery of quercetin, the hydrophobic core-shell nanofibers were fabricated to encapsulate quercetin using ethyl cellulose as the shell and zein as the core by coaxial electrospinning. The encapsulation efficiency of coaxial nanofibers reached >97 %. FTIR and XRD results revealed the interactions between quercetin and wall materials and quercetin was encapsulated in an amorphous state. The thermal stability and surface hydrophobicity of coaxial nanofibers were improved compared to the uniaxial zein fibers. After in vitro gastrointestinal digestion, the quercetin release from core-shell nanofibers was <12.38 %, while the corresponding value for zein fibers was 36.24 %. DPPH and FRAP assays showed that there was no significant difference in the antioxidant activity of quercetin before and after encapsulation. Furthermore, the encapsulated quercetin exhibited similar anti-proliferative activity against HCT-116 cells compared to the free form. The results suggest these coaxial nanofibers have potential applications in functional foods.


Asunto(s)
Nanofibras , Zeína , Quercetina/farmacología , Quercetina/química , Zeína/química , Nanofibras/química , Celulosa/química
3.
J Agric Food Chem ; 70(27): 8207-8221, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35775601

RESUMEN

Poly(lactic acid), also abbreviated as PLA, is a promising biopolymer for food packaging owing to its environmental-friendly characteristic and desirable physical properties. Electrospinning technology makes the production of PLA-based nanomaterials available with expected structures and enhanced barrier, mechanical, and thermal properties; especially, the facile process produces a high encapsulation efficiency and controlled release of bioactive agents for the purpose of extending the shelf life and promoting the quality of foodstuffs. In this study, different types of electrospinning techniques used for the preparation of PLA-based nanofibers are summarized, and the enhanced properties of which are also described. Moreover, its application in active and intelligent packaging materials by introducing different components into nanofibers is highlighted. In all, the review establishes the promising prospects of PLA-based nanocomposites for food packaging application.


Asunto(s)
Nanocompuestos , Nanofibras , Biopolímeros , Embalaje de Alimentos/métodos , Nanofibras/química , Poliésteres/química
4.
Drug Deliv ; 24(1): 1856-1867, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29188738

RESUMEN

In an attempt to improve therapeutic efficacy of dexamethasone (DXM)-loaded solid lipid nanoparticles (NPs) for renal ischemia-reperfusion injury (IRI)-induced acute renal injury (AKI), sialic acid (SA) is used as a ligand to target the inflamed vascular endothelium. DXM-loaded SA-conjugated polyethylene glycol (PEG)ylated NPs (SA-NPs) are prepared via solvent diffusion method and show the good colloidal stability. SA-NPs reduce apoptotic human umbilical vein endothelial cells (HUVECs) via downregulating oxidative stress-induced Bax, upregulating Bcl-xL, and inhibiting Caspase-3 and Caspase-9 activation. Cellular uptake results suggest SA-NPs can be specifically internalized by the inflamed vascular endothelial cells (H2O2-pretreated HUVECs), and the mechanism is associated with the specific binding between SA and E-selectin receptor expressed on the inflamed vascular endothelial cells. Bio-distribution results further demonstrated the enhanced renal accumulation of DXM is achieved in AKI mice treated with SA-NPs, and its content is 2.70- and 5.88-fold higher than those treated with DXM and NPs at 6 h after intravenous administration, respectively. Pharmacodynamic studies demonstrate SA-NPs effectively ameliorate renal functions in AKI mice, as reflected by improved blood biochemical indexes, histopathological changes, oxidative stress levels and pro-inflammatory cytokines. Moreover, SA-NPs cause little negative effects on lymphocyte count and bone mineral density while DXM leads to severe osteoporosis. It is concluded that SA-NPs provide an efficient and targeted delivery of DXM for ischemia-reperfusion-induced injury-induced AKI, with improved therapeutic outcomes and reduced adverse effects.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Portadores de Fármacos/química , Endotelio Vascular/efectos de los fármacos , Lípidos/química , Ácido N-Acetilneuramínico/química , Nanopartículas/química , Daño por Reperfusión/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Animales , Caspasa 3/metabolismo , Línea Celular , Dexametasona/farmacología , Selectina E/metabolismo , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Nanopartículas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Polietilenglicoles/química , Daño por Reperfusión/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA