Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biomacromolecules ; 25(7): 4510-4522, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38877976

RESUMEN

Stimuli-responsive adhesives with on-demand adhesion capabilities are highly advantageous for facilitating wound healing. However, the triggering conditions of stimuli-responsive adhesives are cumbersome, even though some of them are detrimental to the adhesive and adjacent natural tissues. Herein, a novel stimuli-responsive adhesive called shear-stiffening adhesive (SSA) has been created by constructing a poly(diborosiloxane)-based silicone network for the first time, and SSA exhibits a rate-responsive adhesion behavior. Furthermore, we introduced bactericidal factors (PVP-I) into SSA and applied it as a wound dressing to promote the healing of infected wounds. Impressively, the wound dressing not only has excellent biocompatibility and long-term antibacterial properties but also performs well in accelerating wound healing. Therefore, this study provides a new strategy for the synthesis of intelligent adhesives with force rate response, which simplifies the triggering conditions by the force rate. Thus, SSA has great potential to be applied in wound management as an intelligent bioadhesive with on-demand adhesion performance.


Asunto(s)
Vendajes , Siliconas , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Siliconas/química , Adhesivos/química , Adhesivos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Humanos , Staphylococcus aureus/efectos de los fármacos
2.
Macromol Rapid Commun ; 45(3): e2300526, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37877649

RESUMEN

Nature with its abundant source offers numerous inspirations for structural and engineering designs. The oriented membranes stacked with bouligand structures in the fish scales show an outstanding combination of high strength and crack resistance. Although the applications of hard biomimetic composites are reported, the structures are rarely utilized in soft materials. Inspired by the scales of various fishes, electrospun membranes are used and stacked to fabricate bouligand elastomers, including orthogonal-plywood, single-bouligand, and double-bouligand structures. The effects of different structures on the properties of elastomers are systematically investigated and possible mechanism is explained using finite element analysis (FEA). The stiffness and fatigue characteristics of these biomimetic elastomers with the above structures are improved compared with the original membranes, especially the elastomers with a single-bouligand structure, which can undergo 5 000 cycles at a maximum strain of 35% without complete failure. The crack only propagates to half of the width of the elastomer with remaining strength of 50% of its original strength. Moreover, the mechanical performance can be adjusted by regulating the proportion of the components. The excellent crack-resistant properties and transparency promote its various potential applications.


Asunto(s)
Elastómeros , Peces , Animales , Elastómeros/química
3.
Biomacromolecules ; 18(6): 1705-1712, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28463484

RESUMEN

Natural rubber (NR) with proteins and lipids has superior mechanical properties to its synthetic counterpart, polyisoprene rubber. However, it is a challenge to unravel the morphology of proteins and lipids. Here we used two-color stochastic optical reconstruction microscopy (STORM) to directly visualize the spatial organization of proteins and lipids in NR. We found that the proteins and lipids form an interdispersed stabilizing layer on the surface of NR latex particles. After drying, the proteins and lipids form aggregates of up to 300 nm in diameter. The aggregates physically interact with the terminal groups of polyisoprene chains, leading to the formation of a network, which contributes to the high elasticity and mechanical property of NR. If we remove proteins in NR, the large phospholipid aggregates disintegrate into small ones. However, it does not decompose the network but rather reduces the effective cross-linking density, thus the deproteinized NR is still elastic-like with decreased mechanical property. Removing both proteins and lipids wholly decomposes the network, thus, results in a liquid-like behavior of the rubber. The STORM measurements in this paper enable more insight into the structure-property relationship of NR, which also shows a great potential of STORM in studying the fine structure of polymeric materials and nanocomposites.


Asunto(s)
Látex/química , Lípidos/química , Imagen Óptica/métodos , Proteínas de Plantas/química , Goma/química , Hevea/fisiología , Humanos , Lípidos/aislamiento & purificación , Ensayo de Materiales , Microscopía/instrumentación , Microscopía/métodos , Imagen Óptica/instrumentación , Proteínas de Plantas/aislamiento & purificación , Polimerizacion
4.
Int J Biol Macromol ; 270(Pt 1): 132363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754675

RESUMEN

The combination of pharmacological and physical barrier therapy is a highly promising strategy for treating intrauterine adhesions (IUAs), but there lacks a suitable scaffold that integrates good injectability, proper mechanical stability and degradability, excellent biocompatibility, and non-toxic, non-rejection therapeutic agents. To address this, a novel injectable, degradable hydrogel composed of poly(ethylene glycol) diacrylate (PEGDA), sodium alginate (SA), and l-serine, and loaded with platelet-rich plasma (PRP) (referred to as PSL-PRP) is developed for treating IUAs. l-Serine induces rapid gelation within 1 min and enhances the mechanical properties of the hydrogel, while degradable SA provides the hydrogel with strength, toughness, and appropriate degradation capabilities. As a result, the hydrogel exhibits an excellent scaffold for sustained release of growth factors in PRP and serves as an effective physical barrier. In vivo testing using a rat model of IUAs demonstrates that in situ injection of the PSL-PRP hydrogel significantly reduces fibrosis and promotes endometrial regeneration, ultimately leading to fertility restoration. The combined advantages make the PSL-PRP hydrogel very promising in IUAs therapy and in preventing adhesions in other internal tissue wounds.


Asunto(s)
Alginatos , Hidrogeles , Plasma Rico en Plaquetas , Serina , Alginatos/química , Animales , Plasma Rico en Plaquetas/química , Adherencias Tisulares , Femenino , Hidrogeles/química , Ratas , Serina/química , Serina/farmacología , Polietilenglicoles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Inyecciones , Ratas Sprague-Dawley , Enfermedades Uterinas/tratamiento farmacológico , Enfermedades Uterinas/terapia
5.
ACS Appl Bio Mater ; 7(3): 1694-1702, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38373327

RESUMEN

Mouthguards are used to reduce injuries and the probability of them to orofacial tissues when impacted during sports. However, the usage of a mouthguard is low due to the discomfort caused by the thickness of the mouthguard. Herein, we have constructed a dynamic dual network to fabricate a shear-stiffening mouthguard with remoldability, which are called remoldable shear-stiffening mouthguards (RSSMs). Based on diboron/oxygen dative bonds, RSSMs show a shear-stiffening effect and excellent shock absorption ability, which can absorb more than 90% of the energy of a blank. Even reducing the thickness to half, RSSMs can reduce approximately 25% of the transmitted force and elongate by about 1.6-fold the buffer time compared to commercial mouthguard materials (Erkoflex and Erkoloc-pro). What is more, owing to the dynamic dual network, RSSMs show good remolding performance with unchanged shear-stiffening behavior and impact resistance, which conforms to the existing vacuum thermoforming mode. In addition, RSSMs exhibit stability in artificial saliva and biocompatibility. In conclusion, this work will broaden the range of mouthguard materials and offer a platform to apply shear-stiffening materials to biomedical applications and soft safeguarding devices.


Asunto(s)
Protectores Bucales , Diseño de Equipo
6.
Carbohydr Polym ; 333: 121970, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494224

RESUMEN

Insect cuticles that are mainly made of chitin, chitosan and proteins provide insects with rigid, stretchable and robust skins to defend harsh external environment. The insect cuticle therefore provides inspiration for engineering biomaterials with outstanding mechanical properties but also sustainability and biocompatibility. We herein propose a design of high-performance and sustainable bioplastics via introducing CPAP3-A1, a major structural protein in insect cuticles, to specifically bind to chitosan. Simply mixing 10w/w% bioengineered CPAP3-A1 protein with chitosan enables the formation of plastics-like, sustainably sourced chitosan/CPAP3-A1 composites with significantly enhanced strength (∼90 MPa) and toughness (∼20 MJ m -3), outperforming previous chitosan-based composites and most synthetic petroleum-based plastics. Remarkably, these bioplastics exhibit a stretch-strengthening behavior similar to the training living muscles. Mechanistic investigation reveals that the introduction of CPAP3-A1 induce chitosan chains to assemble into a more coarsened fibrous network with increased crystallinity and reinforcement effect, but also enable energy dissipation via reversible chitosan-protein interactions. Further uniaxial stretch facilitates network re-orientation and increases chitosan crystallinity and mechanical anisotropy, thereby resulting in stretch-strengthening behavior. In general, this study provides an insect-cuticle inspired design of high-performance bioplastics that may serve as sustainable and bio-friendly materials for a wide range of engineering and biomedical application potentials.


Asunto(s)
Quitosano , Animales , Quitosano/metabolismo , Insectos , Quitina/química , Materiales Biocompatibles
7.
ACS Appl Mater Interfaces ; 15(46): 53242-53250, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37934067

RESUMEN

Mouthguards are used to prevent craniomaxillofacial injuries when collisions happen during contact and high-speed sports. However, poor compliance with mouthguard wear in athletes is attributed to discomfort because of its thickness and hardness. These drawbacks significantly restrict their protective performance for oral tissues and applications during contact sports; as a result, the incidence of craniomaxillofacial injuries increases. In this study, non-Newton material is introduced into mouthguard material and then a mouthguard with shear-stiffening behavior is fabricated, which is named the shear-stiffening mouthguard (SSM). Compared with commercial mouthguard materials (Erkoflex and Erkoloc-pro), SSMs show remarkable enhancement of shock absorption ability with an approximately 60% reduction in peak force relative to commercial materials and approximately 3-fold extensive buffer time. Moreover, Young's modulus of SSMs (average 0.48 MPa) is extremely lower compared to commercial materials (22.88 MPa for Erkoflex and 26.71 MPa for Erkoloc-pro). This manifests that SSMs have not only excellent shock absorption ability but also softness perception. Moreover, SSMs show biocompatibility in vitro. In conclusion, this work provides a platform to develop a new type of thin and soft mouthguard with a shear-stiffening effect and broadens the horizon in protecting oral tissues with shear-stiffening materials.


Asunto(s)
Protectores Bucales , Deportes , Humanos , Diseño de Equipo , Módulo de Elasticidad , Percepción
8.
Adv Mater ; 35(15): e2207742, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36719993

RESUMEN

Soft, deformable electronic devices provide the means to monitor physiological information and health conditions for disease diagnostics. However, their practical utility is limited due to the lack of intrinsical thermal switching for mechanically transformative adaptability and self-healing capability against mechanical damages. Here, the design concepts, materials and physics, manufacturing approaches, and application opportunities of self-healing, reconfigurable, thermal-switching device platforms based on hyperbranched polymers and biphasic liquid metal are reported. The former provides excellent self-healing performance and unique tunable stiffness and adhesion regulated by temperature for the on-skin switch, whereas the latter results in liquid metal circuits with extreme stretchability (>900%) and high conductivity (3.40 × 104  S cm-1 ), as well as simple recycling capability. Triggered by the increased temperature from the skin surface, a multifunctional device platform can conveniently conform and strongly adhere to the hierarchically textured skin surface for non-invasive, continuous, comfortable health monitoring. Additionally, the self-healing and adhesive characteristics allow multiple multifunctional circuit components to assemble and completely wrap on 3D curvilinear surfaces. Together, the design, manufacturing, and proof-of-concept demonstration of the self-healing, transformative, and self-assembled electronics open up new opportunities for robust soft deformable devices, smart robotics, prosthetics, and Internet-of-Things, and human-machine interfaces on irregular surfaces.


Asunto(s)
Robótica , Dispositivos Electrónicos Vestibles , Humanos , Electrónica , Piel , Polímeros
9.
J Mater Chem B ; 10(47): 9906-9913, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36448473

RESUMEN

Realizing rapid and stable bonding under humid conditions has remained a challenge in adhesion science and wound dressing. In this study, polyacrylate-based underwater tape with water-enhanced adhesion and antimicrobial performance was designed and synthesized. Good underwater adhesion performance is achieved through the reasonable selection of comonomers, among which 4-hydroxybutyl acrylate (4-HBA) and isobornyl acrylate (IBOA) provide rich hydrogen bond interactions and a rigid side chain stable structure, respectively. The former effectively increases the interface strength between the tape and the substrate, while the latter ensures that the tape can maintain a good cohesion strength under water. Besides, povidone iodine (PVP-I2) as a reinforcing filler and germicidal factor endows the tape with tunable mechanical properties and impressive antimicrobial abilities. This work provides a facile approach to prepare a wet adhesive for medical and industrial fields which can be used as wound dressing and underwater adhesive materials.


Asunto(s)
Antiinfecciosos , Povidona Yodada , Povidona Yodada/farmacología
10.
J Mater Chem B ; 10(42): 8684-8695, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36254705

RESUMEN

Estrogen combined with physical barrier therapy may be a prospective method to repair a damaged endometrium and prevent postsurgical re-adhesion in the treatment of intrauterine adhesions (IUAs), but there lacks a suitable scaffold with good biocompatibility, appropriate mechanical properties, and drug-releasing kinetics. Herein, a mechanically robust and stable barrier based on the poly(hydroxyethyl methacrylate) (PHEMA) hydrogel combined with estradiol-loaded mesoporous silica is designed. The network is formed by covalent bonds and noncovalent coordination bonds, which endow the hydrogel with superior mechanical properties to most reported PHEMA-based hydrogels. Meanwhile, the covalent bonds impart excellent stability to the hydrogel, which maintains its structure and mechanical properties in a simulated uterine fluid for 30 days. The excellent mechanical properties and stability are comparable to those of a typical barrier material intrauterine device (IUD), enabling the hydrogel to be retained in the uterus and removed intact like an IUD. In vitro and in vivo experiments show that the hydrogel possesses good biocompatibility similar to pure PHEMA hydrogels. In addition, the hydrogel releases estradiol continuously and stably, and exhibits a good therapeutic effect in promoting the proliferation of endometrial cells and inhibiting the progression of fibrosis. Therefore, the combinational advantages make the present hydrogel very promising in IUA treatment.


Asunto(s)
Estradiol , Polihidroxietil Metacrilato , Femenino , Humanos , Polihidroxietil Metacrilato/química , Estradiol/farmacología , Estradiol/uso terapéutico , Hidrogeles/química , Adherencias Tisulares/tratamiento farmacológico , Adherencias Tisulares/prevención & control , Endometrio/patología
11.
Mater Horiz ; 8(9): 2553-2561, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34870301

RESUMEN

Biological tissues can grow stronger after damage and self-healing. However, artificial self-healing materials usually show decreased mechanical properties after repairing. Here, we develop a self-healing strengthening elastomer (SSE) by engineering kinetic stability in an ionomer. Such kinetic stability is enabled by designing large steric hindrance on the cationic groups, which prevents the structural change driven by thermodynamic instability under room temperature. However, once heat or external force is applied to disrupt the kinetic stability, the inherent thermodynamic instability induces the SSEs to form bigger and denser aggregates, thereby the material becomes stronger during the healing process. Consequently, the self-healing efficiency of fractured SSEs is as high as 143%. Unlike conventional ionomers whose mechanical properties change with time uncontrollably due to the thermodynamic instability, the SSEs show tunable self-healing strengthening behavior, thanks to the kinetic stability. This work provides a novel and universal strategy to fabricate biomimetic self-healing strengthening materials.


Asunto(s)
Elastómeros , Fenómenos Mecánicos , Biomimética , Elastómeros/química , Iones
12.
ACS Appl Mater Interfaces ; 12(23): 26509-26514, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32408733

RESUMEN

The joint membrane of the American lobster shows an excellent combination of high strength, toughness, and defect tolerance due to the periodic helicoidal stacking of the fiber layers that are connected by a weak continuous matrix. Inspired by the joint membrane of American lobsters, we simply use nonwoven fabrics and silicon rubber to fabricate a multilayer soft composite with the helicoidal stacking and controllable matrix. The influences of stacking structure, matrix strength, fabrics strength, and notch size on the fracture behavior of the soft composite during the tensile process are systematically analyzed by both experimental tests and finite element analysis (FEA). We find that similar to the joint membrane, the soft composite demonstrates a gradual failure process and a linear relationship between tensile strength/toughness and notch size. Such phenomena demonstrate the strong defect-tolerant ability, thereby imparting the soft composite with both high strength and toughness. The defect-tolerant ability is closely related to the helicoidal stacking and weak matrix between the fabrics layers, which induce crack deflection and inhibit the propagation of cracks across the sample.


Asunto(s)
Materiales Biomiméticos/química , Elastómeros de Silicona/química , Textiles , Animales , Análisis de Elementos Finitos , Ensayo de Materiales , Nephropidae , Nylons/química , Polipropilenos/química , Estrés Mecánico , Resistencia a la Tracción
13.
ACS Appl Mater Interfaces ; 12(13): 15757-15764, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32163262

RESUMEN

Despite the unceasing flourishing of intelligent actuators, it still remains a huge challenge to design mechanically robust soft actuators with the characteristics of three-dimensional (3D) programmability, reconfigurability, and recyclability. Here, we utilize fully bioderived natural polymers to fabricate biomass soft actuators (BioSA) integrating all above features through an ingenious microstructure design. BioSA consists of an interconnected inverse opal-mimetic skeleton of sodium alginate (NaAlg) and a continuous matrix of epoxidized natural rubber (ENR), with exchangeable ß-hydroxyl ester linkages at their interfaces. The hydrophilic nature and interconnected structure of the NaAlg skeleton endow BioSA with exceedingly acute humidity response and robust mechanical properties. Meanwhile, the dynamic nature of ß-hydroxyl ester linkages enables the design of complex 3D structured soft actuators with reconfigurability and recyclability. Since both ENR and NaAlg are derived from natural resources, and the water-based manufacturing process is extremely facile and environmentally friendly, this work provides a novel strategy to fabricate 3D programmable intelligent actuators with both robust mechanical properties and sustainability.


Asunto(s)
Biomimética , Alginatos/química , Compuestos Epoxi/química , Ésteres/química , Humedad , Goma/química
14.
Acta Biomater ; 88: 102-110, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30711661

RESUMEN

Homarus americanus, known as American lobster, is fully covered by its exoskeleton composed of rigid cuticles and soft membranes. These soft membranes are mainly located at the joints and abdomen to connect the rigid cuticles and greatly contribute to the agility of the lobster in swimming and preying. Herein, we show that the soft membrane from American lobster is a natural hydrogel (90% water) with exceptionally high toughness (up to 24.98 MJ/m3) and strength (up to 23.36 MPa), and is very insensitive to cracks. By combining experimental measurements and large-scale computational modeling, we demonstrate that the unique multilayered structure in this membrane, achieved through the ordered arrangement of chitin fibers, plays a crucial role in dissipating energy during rupture and making this membrane tough and damage tolerant. The knowledge learned from the soft membrane of natural lobsters sheds light on designing synthetic soft, yet strong and tough materials for reliable usage under extreme mechanical conditions, including a flexible armor that can provide full-body protection without sacrificing limb mobility. STATEMENT OF SIGNIFICANCE: A body armor to provide protection to people who are at risk of being hurt is only enabled by using a material that is tough and strong enough to prevent mechanical penetration. However, most modern body armors sacrifice limb protection to gain mobility, simply because none of the existing armor materials are flexible enough and they all inhibit movement of the arms and legs. Herein, we focus on the mechanics and mesoscopic structure of American lobsters' soft membrane and explore how such a natural flexible armor is designed to integrate flexibility and toughness. The knowledge learned from this study is useful to design a flexible armor for full-body protection under extreme mechanical conditions.


Asunto(s)
Quitina/química , Hidrogeles/química , Membranas Artificiales , Modelos Químicos , Nephropidae/química , Estrés Mecánico , Animales
15.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 33(4): 486-491, 2019 Apr 15.
Artículo en Zh | MEDLINE | ID: mdl-30983200

RESUMEN

OBJECTIVE: To manufacture fish swim bladder membrane material by crosslinking techniques, and to explore its physical and chemical properties and cytotoxicity. METHODS: After decellularization, the swim bladders were randomly divided into two groups. The swim bladders were treated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) crosslinking method, surface hole making, and freeze-drying in crosslinking group, and only surface hole making and freeze-drying in non-crosslinking group. The physical and chemical properties of the materials were observed, including microstructure by scanning electron microscopy (SEM), mechanical properties (tensile strength and breaking elongation) by universal tensile machine, hydrophilicity by contact angle measuring instrument, porosity by ethanol infiltration method, degradation performance in vitro and thermal stability test, and the components of materials by infrared spectrum analysis. Mouse fibroblasts (L929) were cultured with the extracts of two groups of materials in order to determine the cytotoxicity of materials by using cell counting kit 8 (CCK-8) method. RESULTS: The porous structure and rough surface of materials were observed by SEM. Compared with the non-crosslinking group, the tensile stress of the crosslinking group was higher, the breaking elongation was lower, and the porosity increased, showing significant differences ( P<0.05). There was no significant difference in contact angle between the two groups ( P>0.05). The degradation was faster within the first 7 days and then tended to be smooth in the two groups. But the degradation rates of crosslinking group were significantly lower than those of non-crosslinking group ( P<0.05). Differential scanning calorimeter showed that the denaturation temperature of the crosslinking group was (75.2±1.3)℃, which was significantly higher than that of the non-crosslinking group [(68.5±0.4)℃] ( t=4.586, P=0.002). Compared with the non-crosslinking group, the crosslinking group produced new C=O bond and N-H bond, and no other new groups were introduced into the cross-linking group. CCK-8 method showed that the absorbance values of the crosslinking group and the non-crosslinking group were not significant when compared with the positive control group ( P>0.05). CONCLUSION: The fish swim bladder membrane obtained by crosslinking treatment with EDC/NHS method has good physical and chemical properties, no cytotoxicity, and is expected to be used as a dura mater repair material.


Asunto(s)
Materiales Biocompatibles , Colágeno , Ingeniería de Tejidos , Animales , Reactivos de Enlaces Cruzados , Peces , Ratones , Resistencia a la Tracción
16.
ACS Appl Mater Interfaces ; 11(40): 36458-36468, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509371

RESUMEN

Hydrogels that are capable of wet adhesion and self-healing can enable major advances in a variety of biomedical applications such as tissue regeneration, wound dressings, wearable/implantable devices, and drug delivery. We hereby developed an innovative but simple strategy to achieve adhesive, self-healing, and highly stretchable double-network hydrogels, which were composed of a primary covalent polyethylene glycol diacrylate (PEGDA) network in combination with a noncovalent network of highly diffusive, giant PEG chains. The adhesion to substrates including tissue matrices was instant and repeatable due to the diffusive PEG chains that can spontaneously penetrate and entangle with the substrate network. Combining the intrinsic biocompatibility of PEG and rational design for tuning the hydrogel network properties, we exemplarily demonstrated that this hydrogel can be used as a three-dimensional matrix for cell culture or as a tissue adhesive for wound healing. The in vivo study showed that the hydrogel is capable of effectively triggering skin wound healing with a significantly lower immune response in comparison to commercial tissue adhesives currently used in clinics. Therefore, our study provides new and critical insights into the design strategy to achieve adhesion and rehealability by taking advantages of the entanglement effect from double-network hydrogels and opens up a new avenue for the application of entanglement-driven hydrogels in regenerative medicine.


Asunto(s)
Hidrogeles/farmacología , Polietilenglicoles/farmacología , Adhesivos Tisulares/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Línea Celular , Matriz Extracelular/metabolismo , Ratones , Ratas , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA