Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ecotoxicol Environ Saf ; 241: 113742, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35679726

RESUMEN

The application of plastic mulch films brings convenience to agricultural production, but also causes plastic waste that can be degraded into microplastics (MPs). However, little is known about the fate of plastic waste in agricultural ecosystem under freeze-thaw alternation in middle and high latitudes, as well as in highlands around the world. Whether the release of plasticizers, i.e. phthalate esters (PAEs), under such conditions would pose a potential risk to exposed organisms due to bioaccumulation is also unknown. To fill these data gaps, the agricultural fields in Liaoning of China with typical freeze-thaw alternation was selected as the study area. The transformation of plastic film was demonstrated by simulation freeze-thaw alternating from -30 to 20 â„ƒ. Soil samples were collected to investigate the patterns of MP composition, abundance, and distribution. Concurrently, the concentrations of two PAEs including bis(2-ethylhexyl) phthalate (DEHP) and diethyl phthalate (DEP) in soils were analyzed to provide information on the correlation between MPs abundance and PAEs concentrations as well as potential risks. The results showed that freeze-thaw alternating can accelerate the formation of MPs and release of PAEs from plastic waste. The abundance of MPs was positively correlated with the concentration of PAEs. Soil PAEs ranged from 3268 ± 213-6351 ± 110 µg/kg, indicating that over 40 % of the PAEs were transferred from plastic films to soils. Such residual amounts could pose risk for exposed organisms. Hence, the current study suggested that special concerns should be given to the release plasticizers in plastic waste of agricultural soils.


Asunto(s)
Ácidos Ftálicos , Contaminantes del Suelo , China , Dibutil Ftalato , Ecosistema , Ésteres , Plastificantes/análisis , Plásticos , Suelo , Contaminantes del Suelo/análisis
2.
Environ Sci Technol ; 55(8): 5442-5452, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33710872

RESUMEN

Cake layer formation is the dominant ultrafiltration membrane fouling mechanism after long-term operation. However, precisely analyzing the cake-layer structure still remains a challenge due to its thinness (micro/nano scale). Herein, based on the excellent depth-resolution and foulant-discrimination of time-of-flight secondary ion mass spectrometry, a three-dimensional analysis of the cake-layer structure caused by natural organic matter was achieved at lower nanoscale for the first time. When humic substances or polysaccharides coexisted with proteins separately, a homogeneous cake layer was formed due to their interactions. Consequently, membrane fouling resistances induced by proteins were reduced by humic substances or polysaccharides, leading to a high flux. However, when humic substances and polysaccharides coexisted, a sandwich-like cake layer was formed owing to the asynchronous deposition based on molecular dynamics simulations. As a result, membrane fouling resistances were superimposed, and the flux was low. Furthermore, it is interesting that cake-layer structures were relatively stable under common UF operating conditions (i.e., concentration and stirring). These findings better elucidate membrane fouling mechanisms of different natural-organic-matter mixtures. Moreover, it is demonstrated that membrane fouling seems lower with a more homogeneous cake layer, and humic substances or polysaccharides play a critical role. Therefore, regulating the cake-layer structure by feed pretreatment scientifically based on proven mechanisms should be an efficient membrane-fouling-control strategy.


Asunto(s)
Ultrafiltración , Purificación del Agua , Sustancias Húmicas , Membranas Artificiales
3.
J Environ Sci (China) ; 90: 10-19, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32081307

RESUMEN

Cake layer formation is inevitable over time for ultrafiltration (UF) membrane-based drinking water treatment. Although the cake layer is always considered to cause membrane fouling, it can also act as a "dynamic protection layer", as it further adsorbs pollutants and dramatically reduces their chance of getting to the membrane surface. Here, the UF membrane fouling performance was investigated with pre-deposited loose flocs in the presence of humic acid (HA). The results showed that the floc dynamic protection layer played an important role in removing HA. The higher the solution pH, the more negative the floc charge, resulting in lower HA removal efficiency due to the electrostatic repulsion and large pore size of the floc layer. With decreasing solution pH, a positively charged floc dynamic protection layer was formed, and more HA molecules were adsorbed. The potential reasons were ascribed to the smaller floc size, greater positive charge, and higher roughness of the floc layer. However, similar membrane fouling performance was also observed for the negative and positive floc dynamic protection layers due to their strong looseness characteristics. In addition, the molecular weight (MW) distribution of HA also played an important role in UF membrane fouling behavior. For the small MW HA molecules, the chance of forming a loose cake layer was high with a negatively charged floc dynamic protection layer, while for the large MW HA molecules it was high with a positively charged floc dynamic protection layer. As a result, slight UF membrane fouling was induced.


Asunto(s)
Sustancias Húmicas , Ultrafiltración , Purificación del Agua , Membranas Artificiales , Peso Molecular
4.
Eur J Pharm Biopharm ; 200: 114315, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789060

RESUMEN

In this work, novel erythrocyte-shaped electrosprayed nanoparticles (EENPs) were designed and constructed by tri-axial electrospraying technique with PEG as the outer layer, PLGA as the middle drugs (paclitaxel [PTX] and osimertinib [OSI]) carrier layer and air as the inner layer. The prepared EENP were characterized and evaluated based on their spectral and morphological attributes. After the PTX/OSI ratio and process optimization, the EENP has inspiring features, including nanoscale size, erythrocyte morphology with a concave disk shape, and satisfactory drug loading (DL) and encapsulation efficiency (EE). In vitro drug release showed that PTX and OSI in the formulation were released in the same ratio, and the cumulative release percentage at 24 h was close to 80 %. Furthermore, the TGIR in the EENP formulation group exceeded 90 %, approximately 3.8-fold higher than that in the free drug group. In summary, we developed an erythrocyte three-core-shell nanoparticle for the co-delivery of PTX and OSI, providing a potential chemotherapeutic delivery system for the treatment of breast cancer.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Portadores de Fármacos , Liberación de Fármacos , Eritrocitos , Nanopartículas , Paclitaxel , Paclitaxel/administración & dosificación , Paclitaxel/farmacocinética , Paclitaxel/química , Compuestos de Anilina/química , Compuestos de Anilina/farmacocinética , Compuestos de Anilina/administración & dosificación , Acrilamidas/química , Nanopartículas/química , Portadores de Fármacos/química , Eritrocitos/efectos de los fármacos , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Tamaño de la Partícula , Polietilenglicoles/química , Sistemas de Liberación de Medicamentos/métodos , Composición de Medicamentos/métodos , Indoles , Pirimidinas
5.
J R Soc Interface ; 21(210): 20230527, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290561

RESUMEN

Biological springs can be used in nature for energy conservation and ultra-fast motion. The loading and unloading rates of elastic materials can play an important role in determining how the properties of these springs affect movements. We investigate the mechanical energy efficiency of biological springs (American bullfrog plantaris tendons and guinea fowl lateral gastrocnemius tendons) and synthetic elastomers. We measure these materials under symmetric rates (equal loading and unloading durations) and asymmetric rates (unequal loading and unloading durations) using novel dynamic mechanical analysis measurements. We find that mechanical efficiency is highest at symmetric rates and significantly decreases with a larger degree of asymmetry. A generalized one-dimensional Maxwell model with no fitting parameters captures the experimental results based on the independently characterized linear viscoelastic properties of the materials. The model further shows that a broader viscoelastic relaxation spectrum enhances the effect of rate-asymmetry on efficiency. Overall, our study provides valuable insights into the interplay between material properties and unloading dynamics in both biological and synthetic elastic systems.


Asunto(s)
Conservación de los Recursos Energéticos , Tendones , Músculo Esquelético , Elasticidad , Elastómeros , Estrés Mecánico , Viscosidad
6.
Water Res ; 242: 120226, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37364354

RESUMEN

The three-dimensional (3D) structure of the cake layer, which could be influenced by water quality factors, plays a significant role in the ultrafiltration (UF) efficiency of water purification. However, it remains challenging to precisely reveal the variation of cake layer 3D structures and water channel characteristics. Herein, we systematically report the variation in the cake layer 3D structure at the nanoscale induced by key water quality factors and reveal its influence on water transport, in particular the abundance of water channels within the cake layer. In comparison with pH and Na+, Ca2+ played more significant role in determining cake layer structures. The sandwich-like cake layer, which was induced by the asynchronous deposition of humic acids and sodium alginate (SA), shifted to an isotropic structure when Ca2+ was present due to the Ca2+ bridging. In comparison with the sandwich-like structure, the isotropic cake layer has higher fractions of free volume (voids) and more water channels, leading to a 147% improvement in the water transport coefficient, 60% reduction in the cake layer resistance, and 21% increase in the final membrane specific flux. Our work elucidates a structure-property relationship where improving the isotropy of the cake layer 3D structure is conducive to the optimization of water channels and water transport within cake layers. This could inspire tailored regulation strategies for cake layers to enhance the UF efficiency of water purification.


Asunto(s)
Ultrafiltración , Purificación del Agua , Ultrafiltración/métodos , Calidad del Agua , Membranas Artificiales , Purificación del Agua/métodos , Sustancias Húmicas/análisis
7.
Water Res ; 236: 119941, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37054609

RESUMEN

The variation in cake layer three-dimensional (3D) structures and related water channel characteristics induced by coagulation pretreatment remains unclear; however, gaining such knowledge will aid in improving ultrafiltration (UF) efficiency for water purification. Herein, the regulation of cake layer 3D structures (3D distribution of organic foulants within cake layers) by Al-based coagulation pretreatment was analyzed at the micro/nanoscale. The sandwich-like cake layer of humic acids and sodium alginate induced without coagulation was ruptured, and foulants were gradually uniformly distributed within the floc layer (toward an isotropic structure) with increasing coagulant dosage (a critical dosage was observed). Furthermore, the structure of the foulant-floc layer was more isotropic when coagulants with high Al13 concentrations were used (either AlCl3 at pH 6 or polyaluminum chloride, in comparison with AlCl3 at pH 8 where small-molecular-weight humic acids were enriched near the membrane). These high Al13 concentrations lead to a 48.4% higher specific membrane flux than that seen for UF without coagulation. Molecular dynamics simulations revealed that with increasing Al13 concentration (Al13: 6.2% to 22.6%), the water channels within the cake layer were enlarged and more connected, and the water transport coefficient was improved by up to 54.1%, indicating faster water transport. These findings demonstrate that facilitating an isotropic foulant-floc layer with highly connected water channels by coagulation pretreatment with high-Al13-concentration coagulants (having a strong ability to complex organic foulants) is the key issue in optimizing the UF efficiency for water purification. The results should provide further understanding of the underlying mechanisms of coagulation-enhancing UF behavior and inspire precise design of coagulation pretreatment to achieve efficient UF.


Asunto(s)
Purificación del Agua , Agua , Ultrafiltración/métodos , Sustancias Húmicas/análisis , Purificación del Agua/métodos , Membranas Artificiales
8.
Environ Pollut ; 316(Pt 1): 120692, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36402421

RESUMEN

Despite the relatively rich literature on the omnipresence of microplastics in marine environments, the current status and ecological impacts of microplastics on global Marine Protected Areas (MPAs) are still unknown. Their ubiquitous occurrence, increasing volume, and ecotoxicological effects have made microplastic an emerging marine pollutant. Given the critical conservation roles of MPAs that aim to protect vulnerable marine species, biodiversity, and resources, it is essential to have a comprehensive overview of the occurrence, abundance, distribution, and characteristics of microplastics in MPAs including their buffer zones. Here, extensive data were collected and screened based on 1565 peer-reviewed literature from 2017 to 2020, and a GIS-based approach was applied to improve the outcomes by considering boundary limits. Microplastics in seawater samples were verified within the boundaries of 52 MPAs; after including the buffer zones, 1/3 more (68 MPAs) were identified as contaminated by microplastics. A large range of microplastic levels in MPAs was summarized based on water volume (0-809,000 items/m3) or surface water area (21.3-1,650,000,000 items/km2), which was likely due to discrepancy in sampling and analytical methods. Fragment was the most frequently observed shape and fiber was the most abundant shape. PE and PP were the most common and also most abundant polymer types. Overall, 2/3 of available data reported that seawater microplastic levels in MPAs were higher than 12,429 items/km2, indicating that global MPAs alone cannot protect against microplastic pollution. The current limitations and future directions were also discussed toward the post-2020 Global Biodiversity Framework goals.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Agua de Mar , Biodiversidad , Agua , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
9.
Biomolecules ; 13(5)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37238613

RESUMEN

Therapeutic strategies for ARID1A-mutant ovarian cancers are limited. Higher basal reactive oxygen species (ROS) and lower basal glutathione (GSH) empower the aggressive proliferation ability and strong metastatic property of OCCCs, indicated by the increased marker of epithelial-mesenchymal transition (EMT) and serving the immunosuppressive microenvironment. However, the aberrant redox homeostasis also empowers the sensitivity of DQ-Lipo/Cu in a mutant cell line. DQ, a carbamodithioic acid derivative, generates dithiocarbamate (DDC) in response to ROS, and the chelation of Cu and DDC further generates ROS and provides a ROS cascade. Besides, quinone methide (QM) released by DQ targets the vulnerability of GSH; this effect, plus the increase of ROS, destroys the redox homeostasis and causes cancer cell death. Also importantly, the formed Cu(DDC)2 is a potent cytotoxic anti-cancer drug that successfully induces immunogenic cell death (ICD). The synergistic effect of EMT regulation and ICD will contribute to managing cancer metastasis and possible drug resistance. In summary, our DQ-Lipo/Cu shows promising inhibitory effects in cancer proliferation, EMT markers, and "heat" the immune response.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Cobre/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Liposomas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glutatión/metabolismo , Microambiente Tumoral , Proteínas de Unión al ADN , Factores de Transcripción/genética
10.
Microsc Res Tech ; 82(11): 1843-1851, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31361070

RESUMEN

Atomic force microscope (AFM) has been widely used in the biological field owing to its high sensitivity (subnanonewton), high spatial resolution (nanometer), and adaptability to physiological environments. Nowadays, force volume (FV) and peakforce quantitative nanomechanical (QNM) are two distinct modes of AFM used in biomechanical research. However, numerous studies have revealed an extremely confusing phenomenon that FV mode has a significant difference with QNM in determining the mechanical properties of the same samples. In this article, for the case of human benign prostatic hyperplasia cells (BPH) and two cancerous prostate cells with different grades of malignancy (PC3 and DU145), the differences were compared between FV and QNM modes in detecting mechanical properties. The results show measured Young's modulus of the same cells in FV mode was much lower than that obtained by QNM mode. Combining experimental results with working principles of two modes, it is indicated that surface adhesion is highly suspected to be a critical factor resulting in the measurement difference between two modes. To further confirm this conjecture, various weight ratios of polydimethylsiloxane (PDMS) were assessed by two modes, respectively. The results show that the difference of Young's modulus measured by two modes increases with the surface adhesion of PDMS, confirming that adhesion is one of the significant elements that lead to the measurement difference between FV and QNM modes.


Asunto(s)
Adhesión Celular/fisiología , Módulo de Elasticidad/fisiología , Fenómenos Mecánicos , Microscopía de Fuerza Atómica/métodos , Línea Celular Tumoral , Dimetilpolisiloxanos/química , Humanos , Células PC-3 , Propiedades de Superficie
11.
Pest Manag Sci ; 75(12): 3312-3322, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31025482

RESUMEN

BACKGROUND: Fusarium head blight (FHB) is a devastating disease of cereal crops worldwide mainly caused by Fusarium graminearum. Due to the unavailability of FHB-resistant wheat cultivars, chemical fungicide application is currently the most effective approach for controlling FHB now. In the last few years, a novel cyanoacrylate fungicide, phenamacril, has been widely used in China for FHB disease management. In previous studies, we identified that myosin I (FgMyo1) is the target of phenamacril and is essential for mycotoxin deoxynivalenol (DON) biosynthesis and fungal growth. However, the regulation of FgMYO1 gene expression is still largely unknown. RESULTS: In this study, we identified a b-ZIP transcription factor, FgTfmI, which regulates the mRNA expression of FgMYO1 upon phenamacril treatment. The FgTfmI directly binds to the promoter region of FgMYO1, and is required for the upregulation of FgMYO1 in response to phenamacril treatment. The deletion mutant of FgTFMI (ΔFgTfmI) displayed a slight growth defect, while it showed hypersensitivity to phenamacril, but not to other tested fungicides. FgTfmI also contributed to DON biosynthesis and the infection process in planta. CONCLUSIONS: The transcription factor FgTfmI plays an important role in regulating transcription of the genes involved in phenamacril tolerance, DON biosynthesis and virulence in F. graminearum. © 2019 Society of Chemical Industry.


Asunto(s)
Cianoacrilatos/farmacología , Resistencia a Medicamentos/genética , Proteínas Fúngicas/genética , Fungicidas Industriales/farmacología , Fusarium/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fusarium/efectos de los fármacos , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Virulencia
12.
ACS Appl Mater Interfaces ; 1(12): 2848-55, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20356166

RESUMEN

We report a facile approach to synthesizing and immobilizing zero-valent iron nanoparticles (ZVI NPs) onto polyelectrolyte (PE) multilayer-assembled electrospun polymer nanofibers for potential environmental applications. In this approach, negatively charged cellulose acetate (CA) nanofibers fabricated by electrospinning were assembled with multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and polyacrylic acid (PAA) through electrostatic layer-by-layer assembly. The formed PAA/PDADMAC multilayers onto CA nanofibers were then used as a nanoreactor to complex Fe(II) ions through the binding with the free carboxyl groups of PAA for subsequent reductive formation of ZVI NPs. Combined scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetry analysis studies demonstrate that the ZVI NPs are successfully synthesized and uniformly distributed into the PE multilayers assembled onto the CA nanofibers. The produced hybrid nanofibrous mats containing ZVI NPs were found to exhibit superior capability to decolorize acid fuchsin, an organic dye in dyeing wastewater. We show that the loading capacity of ZVI NPs can be tuned by changing the number of PE layers and the cycles of binding/reduction process. Increasing the number of the binding/reduction cycles leads to a slight bigger size of the ZVI NPs, which is not beneficial for improving the reactivity of ZVI NPs. The present approach to synthesizing and immobilizing ZVI NPs onto polymer nanofibers opens a new avenue to fabricating various fiber-based composite materials with a high surface area to volume ratio for environmental, catalytic, and sensing applications.


Asunto(s)
Resinas Acrílicas/química , Electrólitos/química , Ambiente , Hierro/química , Nanopartículas del Metal/química , Nanofibras/química , Polietilenos/química , Compuestos de Amonio Cuaternario/química , Bencenosulfonatos/química , Celulosa/análogos & derivados , Celulosa/química , Nanopartículas del Metal/ultraestructura , Nanofibras/ultraestructura , Espectrometría por Rayos X , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA