Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 117: 104414, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33647728

RESUMEN

The application of pit and fissure sealants is a well-established method to prevent and treat early childhood caries. Resin-based sealants with antibacterial properties provide additional benefits for caries prevention in a cariogenic oral environment. The objective of this study was to evaluate the effect of an antibacterial core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) on the properties of a resin-based pit and fissure sealant. A commercialized pit and fissure sealant without fluoride, Concise (3M, ESPE, USA), was used as the parent material and negative control. Experimental antibacterial sealants were formulated by the addition of AgBr/BHPVP nanoparticles at mass fractions of 0.5, 1.0, and 1.5 wt% to the parent material. A fluoride-releasing sealant, Clinpro (3M, ESPE), was used as the positive control. Bacterial colony-forming unit (CFU) counts, metabolic activity tests, field emission-scanning electron microscopy (FE-SEM), and confocal laser scanning microscopy (CLSM) observations were used to evaluate the antibacterial properties of AgBr/BHPVP-modified sealants against Streptococcus mutans before and after five months of aging. The Vickers microhardness, degree of conversion, and microleakage level of the sealants were also investigated. According to the results of CFU counts and metabolic tests, sealants containing AgBr/BHPVP showed better contact-killing bactericidal activity against S. mutans than the two commercial sealants, irrespective of aging conditions (both P < 0.05). The AgBr/BHPVP-modified sealants also showed a significant inhibitory effect on the planktonic S. mutans around the cured sealant surfaces. In addition, the Vickers microhardness, degree of conversion, and microleakage level of the parent material were not damaged by modification with AgBr/BHPVP (P > 0.05). AgBr/BHPVP-modified pit and fissure sealant with a dual bactericidal mechanism is a promising option for the prevention of pit and fissure caries.


Asunto(s)
Caries Dental , Nanocompuestos , Antibacterianos/farmacología , Preescolar , Caries Dental/prevención & control , Fluoruros , Humanos , Rendimiento Físico Funcional , Selladores de Fosas y Fisuras
2.
Bioact Mater ; 6(10): 3557-3567, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33842741

RESUMEN

Dentin bonding is a dynamic process that involves the penetration of adhesive resin monomers into the extrafibrillar and intrafibrillar demineralized collagen matrix using a wet-bonding technique. However, adhesive resin monomers lack the capacity to infiltrate the intrafibrillar space, and the excess water that is introduced by the wet-bonding technique remains at the bonding interface. This imperfectly bonded interface is inclined to hydrolytic degradation, severely jeopardizing the longevity of bonded clinical restorations. The present study introduces a dentin bonding scheme based on a dry-bonding technique, combined with the use of extrafibrillar demineralization and a collagen-reactive monomer (CRM)-based adhesive (CBA). Selective extrafibrillar demineralization was achieved using 1-wt% high-molecular weight (MW) carboxymethyl chitosan (CMCS) within a clinically acceptable timeframe to create a less aggressive bonding substance for dentin bonding due to its selectively extrafibrillar demineralization capacity. CMCS demineralization decreased the activation of in situ collagenase, improved the shrinking resistance of demineralized collagen, and thus provided stronger and more durable bonding than traditional phosphoric acid etching. The new dentin bonding scheme that contained CMCS and CBA and used a dry-bonding technique achieved an encouraging dentin bonding strength and durability with low technical sensitivity. This bonding scheme can be used to improve the stability of the resin-dentin interface and foster the longevity of bonded clinical restorations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA