Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 307: 114585, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085971

RESUMEN

Anaerobic membrane bioreactors are a promising technology in the treatment of high-strength wastewater; however, unpredictable membrane fouling largely limits their scale-up application. This study, therefore, adopted a backpropagation neural network model to predict the membrane filtration performance in a submerged system, which treats leachate from the organic fraction of municipal solid waste. Duration time, water yield flow, influent COD, pH, bulk sludge concentration, and the ratio of ΔTMP to filtration time were selected as input variables to simulate membrane permeability. The membrane pressure slightly increased by 1.1 kPa within 62 days of operation. The results showed that the AnMBR membrane filtration performance was acceptable when treating OFMSW leachate under a flux of 6 L/(m2·h). The model results indicated that the sludge concentration largely determined the membrane fouling with a contribution of 33.8%. Given the local minimization problem in the BP neural network process, a genetic algorithm was introduced to optimize the simulation process, and the relative error of the results was reduced from 5.57% to 3.57%. Conclusively, the artificial neural network could be a useful tool for the prediction of an AnMBR that is so far under development.


Asunto(s)
Membranas Artificiales , Eliminación de Residuos Líquidos , Algoritmos , Anaerobiosis , Reactores Biológicos , Metano , Redes Neurales de la Computación , Aguas del Alcantarillado , Aguas Residuales
2.
Chemosphere ; 342: 140151, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37714478

RESUMEN

Anaerobic membrane bioreactor is advantageous over traditional processes for food waste treatment, i.e. short retention time, high loading rate, and particulate clean permeate. However, establishing a sustainable membrane filtration is a long-standing challenge because of its high viscosity and solids concentration characteristics. Therefore, this study investigated the changes in the membrane permeability before and after the cleaning during a 130-day thermophilic anaerobic experiment. Results show that the AnMBR system could maintain high stability even under a short HRT of 10 days and OLR of 9.0 kg-COD/(m3·d) with low volatile fatty acid of 50 mg/L. The membrane filtration deteriorates with the concurrence of a sharp increase of viscosity when the volatile solids reached 23 g/L. A critical flux was achieved at 5.5 L/(m2·h) under optimized operation conditions, membrane filtration/relaxing ratio with less than 4:1 at a hydraulic retention time of 15 d. Membrane fouling can be removed by soaking the membrane in NaClO (1 g/L, 15 h) and citric acid (2 g/L, 2 h). Conclusively, this work provides insight to establish the operation strategy for a thermophilic AnMBR treating food waste.


Asunto(s)
Alimentos , Eliminación de Residuos , Residuos Sólidos , Anaerobiosis , Filtración/métodos , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Membranas Artificiales , Metano
3.
Chemosphere ; 292: 133488, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34995632

RESUMEN

Hybrid anaerobic membrane bioreactor (Hy-AnMBR) was developed by incorporating polyurethane sponge carriers to mitigate membrane fouling. The results showed that the membrane fouling was well controlled in Hy-AnMBR from the aspects of sludge property and membrane filtration performance. The solid concentration, including TS and MLSS in the Hy-AnMBR was reduced after introducing the fixed bed carrier, which was 13% and 20% lower than the control AnMBR (Con-AnMBR), and this resulted in improved filtration performance. The scanning electron microscope (SEM) photograph showed that membrane pores could still be observed on the Hy-AnMBR surface, indicating that the cake layer fouling of the Hy-AnMBR was less than the Con-AnMBR. The increase of the EPS and SMP promoted the acceleration of the membrane fouling rate. Analysis through confocal laser scanning microscopy (CLSM) and membrane cleaning revealed that adding sponge carriers mitigated 3.3%-9% pore-blocking, and the total membrane resistance in the Hy-AnMBR was reduced by 52% compared to the Con-AnMBR. Chemical cleaning was essential for pollutant removal, and membrane permeability recovery was more than 97%.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Anaerobiosis , Reactores Biológicos , Alimentos , Membranas Artificiales , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
4.
Bioresour Technol ; 341: 125861, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34479138

RESUMEN

The thermophilic anaerobic digestion of food waste was a long-term challenge for maintaining process stability. A hybrid submerged anaerobic membrane bioreactor (AnMBR), integrating 27%(v/v) polyurethane sponge as fixed carriers were therefore investigated at (50 ± 2) °C. The organics removal efficiencies, COD mass balance, and membrane filtration performance were investigated in a 75-days continuously operated experiment. The results showed that methane production reached 0.31 L/(kg·COD) under an organic loading rate of 7.3 kg·COD/(m3·d). The low concentration of total volatile fatty acids of 247 ~ 274 mg/L and a high proportion of Methanosarcina (>97%) represented the high stability of the thermophilic process. Approximately 21% of biomass grew on the carriers in the hybrid AnMBR and induced a much lower suspended solids concentration and viscosity of bulk sludge. Noticeable lower trans-membrane pressure was consequently observed. The affecting factors identified by PCA analysis proved the advantages of the hybrid AnMBR for alleviating membrane fouling formation.


Asunto(s)
Eliminación de Residuos , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Alimentos , Membranas Artificiales , Metano , Aguas del Alcantarillado , Aguas Residuales
5.
Bioresour Technol ; 329: 124927, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33706177

RESUMEN

The anaerobic digestion of leachate from organic fraction of municipal solid waste (OFMSW) is a long-standing challenge. A submerged anaerobic membrane bioreactor (AnMBR) embedding three flat sheet membrane was therefore continuously operated for 63 days to investigate the materials flow and membrane performance. The results obtained show that approximately 90% COD was removed and 86% was converted into methane under an OLR of 5.6 kgCOD/m3·d corresponding to a HRT of 10 days. Under the high solid condition (34.5-61.1 g/L total solids in AnMBR) and flux of 5 and 6 LMH, the membranes was operated practically at constant trans-membrane pressure (TMP). When the membrane was operated at a high flux of 7 LMH the TMP rapid increase occurred in 22 h resulting in a non-recoverable permeability. A sustainable flux was thus identified. This study demonstrated the feasibility of AnMBR treating OFMSW leachate under high solid condition with high flux.


Asunto(s)
Membranas Artificiales , Residuos Sólidos , Anaerobiosis , Reactores Biológicos , Metano , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA