Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Nanobiotechnology ; 20(1): 329, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842642

RESUMEN

Photodynamic therapy (PDT) has emerged as an attractive therapeutic approach which can elicit immunogenic cell death (ICD). However, current ICD inducers are still very limited as the representative ICD induces of photosensitizers can only evoke insufficient ICD to achieve unsatisfactory cancer immunotherapy. Herein, we demonstrated the use of a triple action cationic porphyrin-cisplatin conjugate (Pt-1) for drug delivery by a reactive oxygen species (ROS) sensitive polymer as nanoparticles (NP@Pt-1) for combined chemotherapy, PDT and immunotherapy. This unique triple action Pt-1 contains both chemotherapeutic Pt drugs and Porphyrin as a photosensitizer to generate ROS for PDT. Moreover, the ROS generated by Pt-1 can on the one hand degrade polymer carriers to release Pt-1 for chemotherapy and PDT. On the other hand, the ROS generated by Pt-1 subsequently triggered the ICD cascade for immunotherapy. Taken together, we demonstrated that NP@Pt-1 were the most effective and worked in a triple way. This study could provide us with new insight into the development of nanomedicine for chemotherapy, PDT as well as cancer immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Línea Celular Tumoral , Cisplatino/farmacología , Muerte Celular Inmunogénica , Inmunoterapia , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Polímeros , Porfirinas/farmacología , Especies Reactivas de Oxígeno/metabolismo
2.
Nano Lett ; 21(8): 3680-3689, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33596656

RESUMEN

Efficient endosomal escape is the most essential but challenging issue for siRNA drug development. Herein, a series of quaternary ammonium-based amphiphilic triblock polymers harnessing an elaborately tailored pH-sensitive hydrophobic core were synthesized and screened. Upon incubating in an endosomal pH environment (pH 6.5-6.8), mPEG45-P(DPA50-co-DMAEMA56)-PT53 (PDDT, the optimized polymer) nanomicelles (PDDT-Ms) and PDDT-Ms/siRNA polyplexes rapidly disassembled, leading to promoted cytosolic release of internalized siRNA and enhanced silencing activity evident from comprehensive analysis of the colocalization and gene silencing using a lysosomotropic agent (chloroquine) and an endosomal trafficking inhibitor (bafilomycin A1). In addition, PDDT-Ms/siPLK1 dramatically repressed tumor growth in both HepG2-xenograft and highly malignant patient-derived xenograft models. PDDT-Ms-armed siPD-L1 efficiently blocked the interaction of PD-L1 and PD-1 and restored immunological surveillance in CT-26-xenograft murine model. PDDT-Ms/siRNA exhibited ideal safety profiles in these assays. This study provides guidelines for rational design and optimization of block polymers for efficient endosomal escape of internalized siRNA and cancer therapy.


Asunto(s)
Endosomas , Polímeros , Animales , Línea Celular Tumoral , Silenciador del Gen , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , ARN Interferente Pequeño/genética
3.
Mol Ther ; 25(1): 92-101, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28129133

RESUMEN

The high vulnerability of mRNA necessitates the manufacture of delivery vehicles to afford adequate protection in the biological milieu. Here, mRNA was complexed with a mixture of cRGD-poly(ethylene glycol) (PEG)-polylysine (PLys) (thiol) and poly(N-isopropylacrylamide) (PNIPAM)-PLys(thiol). The ionic complex core consisting of opposite-charged PLys and mRNA was crosslinked though redox-responsive disulfide linkage, thereby avoiding structural disassembly for exposure of mRNA to harsh biological environments. Furthermore, PNIPAM contributed to prolonged survival in systemic circulation by presenting a spatial barrier in impeding accessibility of nucleases, e.g., RNase, due to the thermo-responsive hydrophilic-hydrophobic transition behavior upon incubation at physiological temperature enabling translocation of PNIPAM from shell to intermediate barrier. Ultimately, the cRGD ligand attached to the formulation demonstrated improved tumor accumulation and potent gene expression, as manifested by virtue of facilitated cellular uptake and intracellular trafficking. These results indicate promise for the utility of mRNA as a therapeutic tool for disease treatment.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Polímeros , ARN Mensajero/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Composición de Medicamentos , Humanos , Ligandos , Nanopartículas/química , Neoplasias/metabolismo , Neoplasias/patología , Polietilenglicoles/química , Polilisina/química , Polímeros/síntesis química , Polímeros/química , ARN Mensajero/química
4.
Adv Mater ; 36(30): e2402452, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38691849

RESUMEN

The in vivo fate of chemotherapeutic drugs plays a vital role in understanding the therapeutic outcome, side effects, and the mechanism. However, the lack of imaging abilities of drugs, tedious labeling processes, and premature leakage of imaging agents result in loss of fidelity between the drugs and imaging signals. Herein, an amphiphilic polymer is created by copolymerization of a near-infrared-II (NIR-II) fluorophore tracer (T) and an anticancer Pt(IV) prodrug (D) of cisplatin in a hand-holding manner into one polymer chain for the first time. The obtained PolyplatinDT is capable of delivering the drugs and the fluorophores concomitantly at a precise D/T ratio, thereby resulting in tracking the platinum drugs and even readout of them in real-time via NIR-II imaging. PolyplatinDT can self-assemble into nanoparticles, referred to as NanoplatinDT. Furthermore, a caspase-3 cleavable peptide that serves as an apoptosis reporter is attached to NanoplatinDT, resulting in NanoplatinDTR that are capable of simultaneously tracking platinum drugs and evaluating the therapeutic efficacy. Overall, it is reported here the design of the first theranostic polymer with anticancer drugs, drug tracers, and drug efficacy reporters that can work in concert to provide insight into the drug fate and mechanism of action.


Asunto(s)
Antineoplásicos , Colorantes Fluorescentes , Profármacos , Profármacos/química , Profármacos/farmacología , Humanos , Colorantes Fluorescentes/química , Antineoplásicos/química , Antineoplásicos/farmacología , Cisplatino/química , Cisplatino/farmacología , Nanopartículas/química , Animales , Línea Celular Tumoral , Polímeros/química , Ratones , Imagen Óptica , Apoptosis/efectos de los fármacos , Portadores de Fármacos/química
5.
Nat Commun ; 15(1): 6026, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019855

RESUMEN

Cationic polymers have great potential for cancer therapy due to their unique interactions with cancer cells. However, their clinical application remains limited by their high toxicity. Here we show a cell membrane-targeting cationic polymer with antineoplastic activity (Pmt) and a second near-infrared (NIR-II) fluorescent biodegradable polymer with photosensitizer Bodipy units and reactive oxygen species (ROS) responsive thioketal bonds (PBodipy). Subsequently, these two polymers can self-assemble into antineoplastic nanoparticles (denoted mt-NPBodipy) which could further accumulate at the tumor and destroy cell membranes through electrostatic interactions, resulting in cell membrane destabilization. Meanwhile, the photosensitizer Bodipy produces ROS to induce damage to cell membranes, proteins, and DNAs to kill cancer cells concertedly, finally resulting in cell membrane lysis and cancer cell death. This work highlights the use of near-infrared light to spatially and temporarily control cationic polymers for photodynamic therapy, photo-immunotherapy, and NIR-II fluorescence for bio-imaging.


Asunto(s)
Membrana Celular , Inmunoterapia , Rayos Infrarrojos , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Humanos , Nanopartículas/química , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Inmunoterapia/métodos , Animales , Especies Reactivas de Oxígeno/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Ratones , Fotoquimioterapia/métodos , Línea Celular Tumoral , Compuestos de Boro/química , Compuestos de Boro/farmacología , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Polímeros/química , Antineoplásicos/farmacología , Antineoplásicos/química , Femenino
6.
Adv Mater ; 36(11): e2310456, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38092007

RESUMEN

Pyroptosis, an emerging mechanism of programmed cell death, holds great potential to trigger a robust antitumor immune response. Platinum-based chemotherapeutic agents can induce pyroptosis via caspase-3 activation. However, these agents also enhance cyclooxygenase-2 (COX-2) expression in tumor tissues, leading to drug resistance and immune evasion in pancreatic cancer and significantly limiting the effectiveness of chemotherapy-induced pyroptosis. Here, an amphiphilic polymer (denoted as PHDT-Pt-In) containing both indomethacin (In, a COX-2 inhibitor) and platinum(IV) prodrug (Pt(IV)) is developed, which is responsive to glutathione (GSH). This polymer self-assemble into nanoparticles (denoted as Pt-In NP) that can disintegrate in cancer cells due to the GSH responsiveness, releasing In to inhibit the COX-2 expression, hence overcoming the chemoresistance and amplifying cisplatin-induced pyroptosis. In a pancreatic cancer mouse model, Pt-In NP significantly inhibit tumor growth and elicit both innate and adaptive immune responses. Moreover, when combined with anti-programmed death ligand (α-PD-L1) treatment, Pt-In NP demonstrate the ability to completely suppress metastatic tumors, transforming "cold tumors" into "hot tumors". Overall, the sustained release of Pt(IV) and In from Pt-In NP amplifies platinum-drug-induced pyroptosis to elicit long-term immune responses, hence presenting a generalizable strategy for pancreatic cancer.


Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Profármacos , Animales , Ratones , Profármacos/farmacología , Profármacos/uso terapéutico , Platino (Metal) , Ciclooxigenasa 2 , Piroptosis , Cisplatino/farmacología , Nanopartículas/uso terapéutico , Polímeros , Neoplasias Pancreáticas/tratamiento farmacológico , Línea Celular Tumoral
7.
Biomaterials ; 309: 122618, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38797122

RESUMEN

Over the last decades, a variety of metal complexes have been developed as chemotherapeutic agents. Despite the promising therapeutic prospects, the vast majority of these compounds suffer from low solubility, poor pharmacological properties, and most importantly poor tumor accumulation. To circumvent these limitations, herein, the incorporation of cytotoxic Ir(III) complexes and a variety of photosensitizers into polymeric gemini nanoparticles that selectively accumulate in the tumorous tissue and could be activated by near-infrared (NIR) light to exert an anticancer effect is reported. Upon exposure to light, the photosensitizer is able to generate singlet oxygen, triggering the rapid dissociation of the nanostructure and the activation of the Ir prodrug, thereby initiating a cascade of mitochondrial targeting and damage that ultimately leads to cell apoptosis. While selectively accumulating into tumorous tissue, the nanoparticles achieve almost complete eradication of the cisplatin-resistant cervical carcinoma tumor in vivo upon exposure to NIR irradiation.


Asunto(s)
Antineoplásicos , Compuestos de Boro , Rayos Infrarrojos , Iridio , Nanopartículas , Polímeros , Nanopartículas/química , Humanos , Animales , Compuestos de Boro/química , Compuestos de Boro/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Iridio/química , Polímeros/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Femenino , Ratones , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB C , Fotoquimioterapia/métodos , Células HeLa , Ratones Desnudos
8.
Adv Mater ; 36(14): e2310298, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38145801

RESUMEN

Photodynamic therapy (PDT), as a new type of light-mediated reactive oxygen species (ROS) cancer therapy, has the advantages of high therapeutic efficiency, non-resistance, and less trauma than traditional cancer therapy such as surgery, radiotherapy, and chemotherapy. However, oxygen-dependent PDT further exacerbates tumor metastasis. To this end, a strategy that circumvents tumor metastasis to improve the therapeutic efficacy of PDT is proposed. Herein, a near-infrared light-activated photosensitive polymer is synthesized and branched the anti-metastatic ruthenium complex NAMI-A on the side, which is further assembled to form nanoparticles (NP2) for breast cancer therapy. NP2 can kill tumor cells by generating ROS under 808 nm radiation (NP2 + L), reduce the expression of matrix metalloproteinases (MMP2/9) in cancer cells, decrease the invasive and migration capacity of cancer cells, and eliminate cancer cells. Further animal experiments show that NP2 + L can inhibit tumor growth and reduce liver and lung metastases. In addition, NP2 + L can activate the immune system in mice to avoid tumor recurrence. In conclusion, a PDT capable of both preventing tumor metastasis and precisely hitting the primary tumor to achieve effective treatment of highly metastatic cancers is developed.


Asunto(s)
Dimetilsulfóxido/análogos & derivados , Nanopartículas , Compuestos Organometálicos , Fotoquimioterapia , Compuestos de Rutenio , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Nanopartículas/uso terapéutico , Polímeros , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
9.
Adv Sci (Weinh) ; 11(4): e2300806, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37166035

RESUMEN

Poor immunogenicity seriously hampers the broader implementation of antitumor immunotherapy. Enhanced immunogenicity capable of achieving greater antitumor immunity is urgently required. Here, a novel polymer that contains hydrophobic ferrocene (Fc) units and thioketal bonds in the main chain, which further delivered a prodrug of oxaliplatin and artesunate, i.e., Artoxplatin, to cancer cells is described. This polymer with Fc units in the nanoparticle can work as a polyigniter to spark the peroxide bonds in Artoxplatin and generate abundant reactive oxygen species (ROS) to kill cancers as nanobombig for cancer therapy. Moreover, ROS can trigger the breakdown of thioketal bonds in the polymer, resulting in the biodegradation of the polymer. Importantly, nanobombig can facilitate the maturation of dendritic cells and promote the activation of antitumor immunity, through the enhanced immunogenic cell death effect by ROS generated in situ. Furthermore, metabolomics analysis reveals a decrease in glutamine in nanobombig -treated cancer cells, resulting in the upregulation of programmed death ligand 1 (PD-L1). Consequently, it is further demonstrated enhanced tumor inhibitory effects when using nanobombig combined with anti-PD-L1 therapy. Overall, the nanosystem offers a rational design of an efficient chemo-immunotherapy regimen to promote antitumor immunity by improving tumor immunogenicity, addressing the key challenges cancer immunotherapy faced.


Asunto(s)
Antígeno B7-H1 , Compuestos Ferrosos , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Especies Reactivas de Oxígeno , Metalocenos , Neoplasias/tratamiento farmacológico , Polímeros
10.
ACS Nano ; 18(11): 7852-7867, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38437513

RESUMEN

The clinical application of cisplatin (CisPt) is limited by its dose-dependent toxicity. To overcome this, we developed reduction-responsive nanoparticles (NP(3S)s) for the targeted delivery of a platinum(IV) (Pt(IV)) prodrug to improve efficacy and reduce the toxicity. NP(3S)s could release Pt(II) and hydrogen sulfide (H2S) upon encountering intracellular glutathione, leading to potent anticancer effects. Notably, NP(3S)s induced DNA damage and activated the STING pathway, which is a known promoter for T cell activation. Comparative RNA profiling revealed that NP(3S)s outperformed CisPt in enhancing T cell immunity, antitumor immunity, and oxidative stress pathways. In vivo experiments showed that NP(3S)s accumulated in tumors, promoting CD8+ T cell infiltration and boosting antitumor immunity. Furthermore, NP(3S)s exhibited robust in vivo anticancer efficacy while minimizing the CisPt-induced liver toxicity. Overall, the results indicate NP(3S)s hold great promise for clinical translation due to their low toxicity profile and potent anticancer activity.


Asunto(s)
Antineoplásicos , Profármacos , Profármacos/química , Cisplatino , Polímeros , Glutatión , Línea Celular Tumoral
11.
Adv Sci (Weinh) ; 11(17): e2309624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408124

RESUMEN

Mild-heat photothermal antibacterial therapy avoids heat-induced damage to normal tissues but causes bacterial tolerance. The use of photothermal therapy in synergy with chemodynamic therapy is expected to address this issue. Herein, two pseudo-conjugated polymers PM123 with photothermal units and PFc with ferrocene (Fc) units are designed to co-assemble with DSPE-mPEG2000 into nanoparticle NPM123/Fc. NPM123/Fc under 1064 nm laser irradiation (NPM123/Fc+NIR-II) generates mild heat and additionally more toxic ∙OH from endogenous H2O2, displaying a strong synergistic photothermal and chemodynamic effect. NPM123/Fc+NIR-II gives >90% inhibition rates against MDR ESKAPE pathogens in vitro. Metabolomics analysis unveils that NPM123/Fc+NIR-II induces bacterial metabolic dysregulation including inhibited nucleic acid synthesis, disordered energy metabolism, enhanced oxidative stress, and elevated DNA damage. Further, NPM123/Fc+NIR-II possesses >90% bacteriostatic rates at infected wounds in mice, resulting in almost full recovery of infected wounds. Immunodetection and transcriptomics assays disclose that the therapeutic effect is mainly dependent on the inhibition of inflammatory reactions and the promotion of wound healing. What is more, thioketal bonds in NPM123/Fc are susceptible to ROS, making it degradable with highly favorable biosafety in vitro and in vivo. NPM123/Fc+NIR-II with a unique synergistic antibacterial strategy would be much less prone to select bacterial resistance and represent a promising antibiotics-alternative anti-infective measure.


Asunto(s)
Antibacterianos , Modelos Animales de Enfermedad , Nanopartículas , Terapia Fototérmica , Polímeros , Infección de Heridas , Animales , Ratones , Nanopartículas/química , Polímeros/química , Polímeros/farmacología , Infección de Heridas/tratamiento farmacológico , Antibacterianos/farmacología , Terapia Fototérmica/métodos
12.
Adv Mater ; 35(52): e2305668, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37668998

RESUMEN

Photodynamic therapy (PDT) and photothermal therapy (PTT) leverage reactive oxygen species (ROS) and control local hyperthermia by photosensitizer to perturb intracellular redox equilibrium, inducing DNA damage in both mitochondria and nucleus, activating the cGAS-STING pathway, ultimately eliciting antitumor immune responses. However, current photosensitizers are encumbered by limitations such as suboptimal tumor targeting, aggregation-caused quenching (ACQ), and restricted excitation and emission wavelengths. Here, this work designs novel nanoparticles based on aggregation-induced emission (AIE) photosensitizer (BODTPE) for targeted tumor therapy and near-infrared II fluorescence imaging (NIR-II FLI) with enhanced PDT/PTT effects. BODTPE is employed as a monomer, dibenzocyclooctyne (DBCO)-PEG2k -amine serving as an end-capping polymer, to synthesize a BODTPE-containing polymer (DBD). Further, through self-assembly, DBD and mPEG-DSPE2k combined to form nanoparticles (NP-DBD). Notably, the DBCO on the surface of NP-DBD can react with azide groups on cancer cells pretreated with Ac4 ManNAz through a copper-free click reaction. This innovative formulation led to targeted accumulation of NP-DBD within tumor sites, a phenomenon convincingly demonstrated in murine tumor models subjected to N-azidoacetylmannosamine-tetraacylated (Ac4 ManNAz) pretreatment. Significantly, NP-DBD exhibits a multifaceted effect encompassing PDT/PTT/NIR-II FLI upon 808 nm laser irradiation, thereby better activating the cGAS-STING pathway, culminating in a compelling tumor inhibition effect augmented by robust immune modulation.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Polímeros , Línea Celular Tumoral
13.
Adv Mater ; 35(28): e2300048, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37016274

RESUMEN

Selective activation of Pt(IV) prodrugs within tumors is particularly attractive because of their low damage to normal tissues. However, current common activation via chemical/photoreduction of Pt(IV) prodrugs into Pt(II) counterparts is limited by undesirable spatial-temporal control over this reduction process and the ineffective tissue penetration depth of undesirable light. Here, a pseudo-conjugated-polymer is designed via Stille polymerization, resulting in PSP-Pt with a Pt(IV) prodrug of oxaliplatin (Oxa(IV)) in the polymer main chain that can be activated by NIR-II light. PSP-Pt can co-assemble with a commercially available lipid polymer, namely mPEG2k -DSPE, into NPPSP-Pt . Under 1064 nm light irradiation, NPPSP-Pt can be photoactivated to accelerate the Pt(IV) reduction to release oxaliplatin, thereby killing the cancer cells by photothermal effect and chemo-immunotherapy inside a mouse model with CT26 colon cancer. This work reports the application of NIR-II light for accelerating Pt(IV) reduction for cancer tumor therapy.


Asunto(s)
Nanopartículas , Neoplasias , Profármacos , Ratones , Animales , Profármacos/farmacología , Profármacos/uso terapéutico , Polímeros/uso terapéutico , Oxaliplatino , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Inmunoterapia , Línea Celular Tumoral
14.
Adv Mater ; 35(31): e2209799, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37276889

RESUMEN

Photodynamic therapy (PDT) has achieved great success in cancer treatment. Despite its great promise, the efficacy of photodynamic immunotherapy can be limited by the hypoxia in solid tumors which is closely related to the abnormal tumor vasculature. These abnormal vasculatures are a hallmark of most solid tumors and facilitate immune evasion. Therefore, tumor vascular normalization is developed as a promising strategy to overcome tumor hypoxia, resulting in improved cancer therapy. Here, a NIR-II bio-degradable pseudo-conjugate polymer (PSP)-based photodynamic polymer is designed to deliver a vascular normalization agent, i.e., regorafenib (Reg) in nanoparticles (NP-PDT@Reg). NP-PDT@Reg under 808 nm laser irradiation (NP-PDT@Reg + L) can efficiently release Reg to improve the tumor hypoxia via vascular normalization, making more NP-PDT@Reg and oxygen enter the tumors. Moreover, NP-PDT@Reg + L can further result in generation of more reactive oxygen species (ROS) to eradicate tumor cells while inducing immunogenic cell death (ICD) to activate anti-tumor immune responses. In addition, Reg can reprogram TAM from a pro-tumor M2 phenotype to a tumor-killing M1 phenotype as well, thereby reversing the immunosuppressive tumor microenvironment. Taken together, the current study provides an innovative perspective on the development of novel nanomaterials to overcome the limitations in photodynamic immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Hipoxia Tumoral , Macrófagos Asociados a Tumores , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos , Polímeros/farmacología , Microambiente Tumoral
15.
Biomater Sci ; 12(1): 176-186, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37955583

RESUMEN

The development of cationic polymers that simulate antimicrobial peptides to treat bacterial infections has received much research interest. In order to obtain polymers that can not only eradicate bacteria but also inhibit biofilm formation, without inducing bacterial drug resistance, a series of cationic polymers have been developed. Despite recent progress, the chemical structures of these polymers are stable, making them recalcitrant to biodegradation and metabolism within organisms, potentially inducing long-term toxicity. To overcome this limitation, herein, a novel strategy of designing biodegradable polyurethanes with tertiary amines and quaternary ammonium salts via condensation polymerization and post-functionalizing them is reported. These polymers were found to exhibit potent antibacterial activity against Staphylococcus aureus and Escherichia coli, effectively prevent the formation of Staphylococcus aureus biofilms, act quickly and effectively against bacteria and display no resistance after repeated use. In addition, the potent in vivo antibacterial effects of these antimicrobial polyurethanes in a mouse model with methicillin-resistant Staphylococcus aureus skin infection are demonstrated.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Ratones , Animales , Poliuretanos/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Infecciones Estafilocócicas/tratamiento farmacológico , Biopelículas , Polímeros/química , Pruebas de Sensibilidad Microbiana
16.
Adv Sci (Weinh) ; 10(35): e2206932, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37939284

RESUMEN

Photodynamic therapy (PDT) has been widely employed in tumor treatment due to its effectiveness. However, the tumor hypoxic microenvironment which is caused by abnormal vasculature severely limits the efficacy of PDT. Furthermore, the abnormal vasculature has been implicated in the failure of immunotherapy. In this study, a novel nanoparticle denoted as Combo-NP is introduced, composed of a biodegradable NIR II fluorescent pseudo-conjugate polymer featuring disulfide bonds within its main chain, designated as TPA-BD, and the vascular inhibitor Lenvatinib. Combo-NP exhibits dual functionality by not only inducing cytotoxic reactive oxygen species (ROS) to directly eliminate tumor cells but also eliciting immunogenic cell death (ICD). This ICD response, in turn, initiates a robust cascade of immune reactions, thereby augmenting the generation of cytotoxic T lymphocytes (CTLs). In addition, Combo-NP addresses the issue of tumor hypoxia by normalizing the tumor vasculature. This normalization process enhances the efficacy of PDT while concurrently fostering increased CTLs infiltration within the tumor microenvironment. These synergistic effects synergize to potentiate the photodynamic-immunotherapeutic properties of the nanoparticles. Furthermore, when combined with anti-programmed death-ligand 1 (PD-L1), they showcase notable inhibitory effects on tumor metastasis. The findings in this study introduce an innovative nanomedicine strategy aimed at triggering systemic anti-tumor immune responses for the treatment of Uveal melanoma.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Inhibidores de Puntos de Control Inmunológico , Línea Celular Tumoral , Polímeros/química , Inmunoterapia , Nanopartículas/química
17.
Adv Sci (Weinh) ; 10(4): e2205241, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36504435

RESUMEN

Tumor immunotherapy has emerged as one of the most promising therapeutic methods to treat cancer. Despite its clinical application, the immunosuppressive tumor microenvironment compromises the therapeutic efficiency of this technique. To overcome this limitation, many research efforts have been devoted to the development of agents that reprogram the immunosuppressive tumor microenvironment through novel mechanisms. Over the last decade, compounds that intervene through the immunogenic stimulator of interferon genes (STING) pathway have emerged with potential for clinical development. Herein, the encapsulation of chemotherapeutic platinum complexes with a polymer with a cyclic seven-membered ring (PC7A)-based polymer into pH-responsive nanoparticles for multimodal therapeutically enhanced chemotherapy and immunotherapy is presented. This study represents the first nanomaterial with a dual activation mechanism of the STING pathway through DNA fragmentation as well as PC7A binding. The combination of these nanoparticles with immune checkpoint inhibitors demonstrates to nearly fully eradicate a colorectal tumor inside the mouse model by chemotherapy and immunotherapy using the STING pathway.


Asunto(s)
Nanopartículas , Profármacos , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico , Platino (Metal) , Inmunoterapia/métodos , Nanopartículas/química , Polímeros
18.
Mol Pharm ; 9(11): 3200-8, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-22954154

RESUMEN

A biodegradable and amphiphilic copolymer, poly(ethylene glycol)-block-poly(l-lactide-co-2-methyl-2-carboxyl-propylene carbonate) (mPEG-b-P(LA-co-MCC)), which contains pendant carboxyl groups, was chosen as a drug carrier for the active anticancer part (diaminocyclohexane platinum, DACH-Pt) of oxaliplatin to form mPEG-b-P(LA-co-MCC/Pt) complex. A folic acid-conjugated copolymer, folic acid-poly(ethylene glycol)-block-poly(L-lactide) (FA-PEG-PLA), with similar chemical structure was chosen for targeting. Multifunctional micelles were successfully prepared by a coassembling method. In vitro evaluation was performed by using SKOV-3 and MCF-7 cancer cells. In vivo blood clearance of platinum was studied, and the results show that micelles exhibit longer blood circulation after iv injection. Pt biodistribution was studied by measuring its levels in plasma, organs, and tumors, especially in tumor cell DNA, by atomic absorption and inductively coupled plasma mass spectrometry. Antitumor activity was assessed in mice bearing H22 liver cancers, and the results showed that the micelles with FA moieties exhibited greater antitumor efficacy than those without FA or oxaliplatin. Therefore, these novel multifunctional platinum micelles have great potential in future clinical application.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ácido Fólico/química , Micelas , Compuestos Organoplatinos/farmacología , Polímeros/química , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Portadores de Fármacos , Femenino , Humanos , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/patología , Espectrometría de Masas , Ratones , Compuestos Organoplatinos/farmacocinética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Oxaliplatino , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Adv Mater ; 34(34): e2203820, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35817731

RESUMEN

Semiconducting polymers (SP) hold great promise for cancer phototherapy due to their excellent optical properties; however, their clinical application is still hampered by their poor biodegradability. Herein, a self-sacrificially biodegradable pseudo-semiconducting polymer (PSP) for NIR-II fluorescence bioimaging, photodynamic immunotherapy, and photoactivated chemotherapy (PACT) is reported. The PSP can further co-assemble with an amphiphilic polyester with pendant doxorubicin (DOX) in its side chains via reactive oxygen species (ROS)-responsive thioketal linkages (PEDOX ), which are denoted as NP@PEDOX /PSP. The NP@PEDOX /PSP can accumulate at tumor sites and generate ROS for photodynamic immunotherapy as well as near-infrared-II fluorescence (NIR-II) for bioimaging upon irradition at 808 nm. The ROS could break up thioketal linkages in PEDOX , resulting in rapid doxorubicin (DOX) release for PACT. Finally, both PEDOX and PSP are degraded sacrificially by intracellular glutathione (GSH), resulting in the dissociation of NP@PEDOX /PSP. This work highlights the application of self-sacrificially degradable PSP for NIR-II fluorescence bioimaging, photodynamic immunotherapy, and PACT in cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Línea Celular Tumoral , Doxorrubicina/química , Fluorescencia , Glutatión/química , Humanos , Inmunoterapia , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo
20.
Adv Sci (Weinh) ; 9(24): e2201819, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35754296

RESUMEN

Specific localization of photosensitizers (PSs) to a certain organelle could result in targeted attack to cause greater trauma to cancer cells, eventually maximizing photodynamic therapy (PDT). However, currently, efficient and precise transportation of PSs via drug delivery to tumor cells and subcellular organelles is still challenging, due to a so-called step-reduction delivery dilemma (SRDD) which also threatens anticancer drug delivery to exert their efficacy. Herein, a cascade targeting near infrared II (NIR II) fluorescent nanoparticles (NPER/BO-PDT ) is designed that can target bone tumor first and then target the subcellular organelle of endoplasmic reticulum (ER). It is found that NPER/BO-PDT achieves the targeted accumulation of the bone tumor and then ER. NPER/BO-PDT generates reactive oxygen species (ROS) in the subcellular organelles of ER under near infrared light irradiation. The continuous ER stress by ROS promotes the release of more damage-associated molecular patterns, induces immunogenic cell death, stimulates the adaptive immune response, and further synergistically inhibits tumor growth, achieving the so-called photodynamic-immunotherapy. Overall, this study exemplifies a safe and efficient nano-drug delivery system for a bone and ER cascade targeting via delivery of PSs to break the SRDD and highlights potential clinical translation.


Asunto(s)
Neoplasias Óseas , Polímeros , Neoplasias Óseas/metabolismo , Sistemas de Liberación de Medicamentos , Retículo Endoplásmico/metabolismo , Humanos , Inmunoterapia , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA