Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 21(6): 2461-2469, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33686851

RESUMEN

Circulating cell-free DNA (cfDNA) released by damaged cells causes inflammation and has been associated with the progression of sepsis. One proposed strategy to treat sepsis is to scavenge this inflammatory circulating cfDNA. Here, we develop a cfDNA-scavenging nanoparticle (NP) that consists of cationic polyethylenimine (PEI) of different molecular weight grafted to zeolitic imidazolate framework-8 (PEI-g-ZIF) in a simple one-pot process. PEI-g-ZIF NPs fabricated using PEI 1800 and PEI 25k but not PEI 600 suppressed cfDNA-induced TLR activation and subsequent nuclear factor kappa B pathway activity. PEI 1800-g-ZIF NPs showed greater inhibition of cfDNA-associated inflammation and multiple organ injury than naked PEI 1800 (lacking ZIF), and had greater therapeutic efficacy in treating sepsis. These results indicate that PEI-g-ZIF NPs acts as a "nanotrap" that improves upon naked PEI in scavenging circulating cfDNA, reducing inflammation, and reversing the progression of sepsis, thus providing a novel strategy for sepsis treatment.


Asunto(s)
Ácidos Nucleicos Libres de Células , Estructuras Metalorgánicas , Nanopartículas , Sepsis , Humanos , Polietileneimina , Sepsis/tratamiento farmacológico
2.
Adv Mater ; 36(33): e2403557, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38881489

RESUMEN

Excessive cell-free DNA (cfDNA) can induce chronic inflammation by activating intracellular nucleic acid sensors. Intervention in cfDNA-mediated "pro-inflammatory signaling transduction" could be a potential alleviating strategy for chronic inflammation, such as in diabetic wounds. However, effectively and specifically downgrading cfDNA concentration in the pathological microenvironment remains a challenge. Therefore, this work prepares free-standing polydopamine nanosheets through DNA-guided assembly and loaded them into microfluidic hydrogel microspheres. The π─π stacking/hydrogen bonding interactions between polydopamine nanosheets and the π-rich bases of cfDNA, along with the cage-like spatial confinement created by the hydrogel polymer network, achieved cfDNA capture and storage, respectively. Catechol in polydopamine nanosheets can also assist in reducing reactive oxygen species (ROS) levels. Efficient cfDNA binding independent of serum proteins, specific interdiction of abnormal activation of cfDNA-associated toll-like receptor 9, as well as down-regulation of inflammatory cytokines and ROS levels are shown in this system. The chronic inflammation alleviating and the pro-healing effects on the mice model with diabetic wounds are also investigated. This work presents a new strategy for capturing and storing cfDNA to intervene in cell signaling transduction. It also offers new insights into the regulatory mechanisms between inflammatory mediators and biomaterials in inflammation-related diseases.


Asunto(s)
Ácidos Nucleicos Libres de Células , Hidrogeles , Microesferas , Polímeros , Especies Reactivas de Oxígeno , Hidrogeles/química , Animales , Ratones , Ácidos Nucleicos Libres de Células/química , Especies Reactivas de Oxígeno/metabolismo , Polímeros/química , Indoles/química , Inflamación , Humanos , Nanoestructuras/química , Cicatrización de Heridas/efectos de los fármacos , Catecoles/química , ADN/química
3.
Adv Sci (Weinh) ; 11(21): e2401195, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582501

RESUMEN

Neutrophil extracellular traps (NETs) seriously impede diabetic wound healing. The disruption or scavenging of NETs using deoxyribonuclease (DNase) or cationic nanoparticles has been limited by liberating trapped bacteria, short half-life, or potential cytotoxicity. In this study, a positive correlation between the NETs level in diabetic wound exudation and the severity of wound inflammation in diabetic patients is established. Novel NETs scavenging bio-based hydrogel microspheres 'micro-cage', termed mPDA-PEI@GelMA, is engineered by integrating methylacrylyl gelatin (GelMA) hydrogel microspheres with cationic polyethyleneimine (PEI)-functionalized mesoporous polydopamine (mPDA). This unique 'micro-cage' construct is designed to non-contact scavenge of NETs between nanoparticles and the diabetic wound surface, minimizing biological toxicity and ensuring high biosafety. NETs are introduced into 'micro-cage' along with wound exudation, and cationic mPDA-PEI immobilizes them inside the 'micro-cage' through a strong binding affinity to the cfDNA web structure. The findings demonstrate that mPDA-PEI@GelMA effectively mitigates pro-inflammatory responses associated with diabetic wounds by scavenging NETs both in vivo and in vitro. This work introduces a novel nanoparticle non-contact NETs scavenging strategy to enhance diabetic wound healing processes, with potential benefits in clinical applications.


Asunto(s)
Trampas Extracelulares , Hidrogeles , Microesferas , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Trampas Extracelulares/metabolismo , Trampas Extracelulares/efectos de los fármacos , Hidrogeles/química , Animales , Ratones , Humanos , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Masculino , Indoles/química , Indoles/farmacología , Polímeros/química , Neutrófilos/metabolismo , Polietileneimina/química , Polietileneimina/farmacología
4.
ACS Nano ; 18(9): 7084-7097, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38377352

RESUMEN

Severe airway inflammatory disorders impose a significant societal burden, and the available treatments are unsatisfactory. High levels of neutrophil extracellular trap (NET) and cell-free DNA (cfDNA) were detected in the inflammatory microenvironment of these diseases, which are closely associated with persistent uncontrolled neutrophilic inflammation. Although DNase has proven to be effective in mitigating neutrophilic airway inflammation in mice by reducing cfDNA and NET levels, its clinical use is hindered by severe side effects. Here, we synthesized polyglycerol-amine (PGA) with a series of hydroxyl/amine ratios and covered them with black phosphorus (BP) nanosheets. The BP nanosheets functionalized with polyglycerol-50% amine (BP-PGA50) efficiently lowered cfDNA levels, suppressed toll-like receptor 9 (TLR9) activation and inhibited NET formation in vitro. Importantly, BP-PGA50 nanosheets demonstrated substantial accumulation in inflamed airway tissues, excellent biocompatibility, and potent inflammation modulation ability in model mice. The 2D sheet-like structure of BP-PGA50 was identified as a crucial factor for the therapeutic efficacy, and the hydroxyl/amine ratio was revealed as a significant parameter to regulate the protein resistance, cfDNA-binding efficacy, and cytotoxicity. This study shows the promise of the BP-PGA50 nanosheet for tackling uncontrolled airway inflammation, which is also significant for the treatment of other neutrophilic inflammatory diseases. In addition, our work also highlights the importance of proper surface functionalization, such as hydroxyl/amine ratio, in therapeutic nanoplatform construction for inflammation modulation.


Asunto(s)
Ácidos Nucleicos Libres de Células , Glicerol , Neutrófilos , Polímeros , Ratones , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Aminas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA