Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Analyst ; 140(22): 7792-8, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26462299

RESUMEN

An efficient catalyst based on artificial bionic peroxidase was synthesized for electrocatalysis. A poly(ethyleneimine)/Au nanoparticle composite (PEI-AuNP) was prepared and it was then linked to hemin via a coupling reaction between carboxyl groups in hemin and amino groups in PEI without the activation of a carboxyl group by carbodiimide. Fourier transform infrared (FTIR) spectroscopy verified the formation of amido bonds within the structure. The presence of AuNPs contributed greatly in establishing the amido bonds within the composite. Transmission electron microscopy (TEM) and UV-visible spectroscopy were also used to characterize the PEI-AuNP-hemin catalyst. PEI-AuNP-hemin exhibited intrinsic peroxidase-like catalytic activities. The PEI-AuNP-hemin deposited on a glass carbon electrode had strong sensing for H2O2 with a well-defined linear relationship between the amperometric response and H2O2 concentration in the range from 1 µM to 0.25 mM. The detection limit was 0.247 nM with a high sensitivity of 0.347 mA mM(-1) cm(-2). The peroxidase-like catalytic activity of PEI-AuNP-hemin is discussed in relation to its microstructure. The study suggests that PEI-AuNP-hemin may have promising application prospects in biocatalysis and bioelectronics.


Asunto(s)
Oro/química , Hemina/química , Peróxido de Hidrógeno/análisis , Nanopartículas del Metal/química , Polietileneimina/química , Materiales Biomiméticos/química , Biomimética/métodos , Técnicas Biosensibles/métodos , Catálisis , Técnicas Electroquímicas/métodos , Electrodos , Peroxidasa/química
2.
Int J Biol Macromol ; 262(Pt 1): 129837, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302023

RESUMEN

Starch/cellulose composite is one of the most promising systems since both matrix and reinforce agent have same chemical unite glucose, which results in an excellent compatibility. In this work, edible starch film was developed by compositing starch with diverse fibrillary celluloses (FCs) derived from okara, employing a confluence of chemical interactions and mechanical influences. Since diameter of the FCs can be easily controlled by processing methodologies, it is the first time to systematically investigate the effect of diameter of the FCs from macro to nano-scales on the performances of starch-based film. The fabricated macro- and nano-fibrillar celluloses and reinforced starch films were characterized by scanning electron microscope, optical microscopy, Fourier transform infrared spectroscopy, Rheometer and contact angle. Results showed that the FCs increased modulus (about 170 %) and tensile strength (about 180 %) significantly as expected since they are well-compatible and some chemical interactions. It was found that nano-fibrillary celluloses (CNFs) improve the toughness (about 20 %) of the starch film more efficiently, which improved the well-recognized weakness of starch-based materials. The nano-scale roughness on the surface of the starch film caused by different shrinkage ratios between starch and CNFs during drying reduced water sensitivity, which is another well-recognized weakness of starch film.


Asunto(s)
Películas Comestibles , Almidón , Almidón/química , Permeabilidad , Resistencia a la Tracción , Celulosa/química
3.
Sci Total Environ ; 945: 173930, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879027

RESUMEN

Biodegradable microplastics (MPs) have been released into agricultural soils and inevitably undergo various aging processes. Straw return is a popular agricultural management strategy in many countries. However, the effect of straw return on the aging process of biodegradable MPs in flooded paddy soil, which is crucial for studying the characteristics, fate, and environmental implications of biodegradable MPs, remains unclear. Here, we constructed a 180-day microcosm incubation to elucidate the aging mechanism of polylactic acid (PLA)-MPs in straw-enriched paddy soil. This study elucidated that the prominent aging characteristic of PLA-MPs occurred in the straw-enriched paddy soil, accompanied by increased chrominance (76.64-182.3 %), hydrophilicity (2.92-22.07 %), roughness (33.12-58.01 %), and biofilm formation (42.12-100.3 %) for the PLA-MPs, especially with 2 % (w/w) straw return treatment (P < 0.05). A 2 % straw return treatment has significantly impacted ester CO group changes in PLA-MPs, altered the MPs-attached soil bacterial communities composition, strengthened bacterial network structure, and increased soil proteinase K activity. The findings of this work demonstrated that flooded, straw-enriched paddy soil accelerated PLA-MPs aging affected by soil-water chemistry, soil microbe, and soil enzymatic. This study helps to deepen our understanding of the aging process of PLA-MPs in straw return paddy soil. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) are emerging contaminants in the global soil and terrestrial ecosystems. Biodegradable MPs are more likely to be formed and released into agricultural soils during aging. Straw return is a popular agricultural management strategy in many countries. Considering the wide use of plastic film, sewage sludge, plastic-coated fertilizer, and organic fertilizer in agricultural ecosystems, it is crucial to pay attention to the aging process of biodegradable MPs in straw-enriched paddy soil, which has not been adequately emphasized. This aspect has been overlooked in previous studies and threatens ecosystems. This study demonstrated that straw-enriched paddy soil accelerated polylactic acid (PLA)-MPs aging influenced by the dissolved organic matter, microorganisms, and enzyme activity associated with straw decomposition.


Asunto(s)
Agricultura , Biodegradación Ambiental , Microplásticos , Contaminantes del Suelo , Suelo , Microplásticos/análisis , Suelo/química , Contaminantes del Suelo/análisis , Agricultura/métodos , Microbiología del Suelo , Poliésteres , Oryza
4.
Environ Pollut ; 315: 120421, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36252884

RESUMEN

This study is based on a particular test site to simulate the weathering process of microplastics (MPs) in paddy soil. A substantial amount of plastic waste, especially MPs, inevitably accumulates in agricultural soil due to the high consumption and short average use of plastics. Recently, MP pollution has become a global environmental concern. However, insight into the soil weathering process of MPs in paddy soil, particularly in the presence of biochar, is lacking. In this study, the physicochemical properties of polyethylene (PE) MPs were determined through a 24-week weathering system conducted in paddy soil, paddy soil with pyrochar, or hydrochar. Moreover, the sorption of original and weathered PE MPs toward three typical pollutants (cadmium/Cd, bisphenol A/BPA, and dimethyl phthalate/DMP) was investigated. The surface of PE MPs was fractured, 1.1-fold rougher, yellow-colored (11.7 units), and 1.8-fold more oxidized after paddy soil weathering. In addition, the crystallinity, negative charge, and stronger hydrophilicity of weathered PE MPs increased compared to original PE MPs. Weathering in a pyrochar or hydrochar system caused fissures, extensive destruction of amorphous areas, and accelerated chemical or bio-oxidation processes for PE MPs, resulting in a more noticeable change in roughness (1.4-2.2-fold), yellow color (12.7-13.7), crystallinity (1.2-1.5-fold), and oxygen content (2.5-3.6-fold). Weathered PE MPs facilitated the sorption with Cd and BPA, attributed to larger specific surface area, abundant polar functional groups, and increased negatively charged sites. However, sorption of DMP to PE MPs was highly influenced by their hydrophobicity, resulting in decreased hydrophobic partition sorption on weathered PE MPs. Overall, paddy soil weathering affected the properties of PE MPs and enhanced sorption of Cd and BPA but reduced sorption of DMP. The coexistence of biochar exacerbated the paddy soil weathering effect. The insight gained from this study assists in better understanding the weathering process of PE MPs in agricultural soils.


Asunto(s)
Microplásticos , Suelo , Plásticos/química , Polietileno , Cadmio , Adsorción
5.
Oxid Med Cell Longev ; 2022: 9611362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295717

RESUMEN

Atherosclerosis is a chronic inflammatory disease with a high prevalence worldwide, contributing to a series of adverse cardiovascular and cerebrovascular diseases. Periodontal disease induced by pathogenic periodontal microbiota has been well established as an independent factor of atherosclerosis. Periodontal microorganisms have been detected in atherosclerotic plaques. The high-risk microbiota dwelling in the subgingival pocket can stimulate local and systematic host immune responses and inflammatory cascade reactions through various signaling pathways, resulting in the development and progression of atherosclerosis. One often-discussed pathway is the Toll-like receptor-nuclear factor-κB (TLR-NF-κB) signaling pathway that plays a central role in the transduction of inflammatory mediators and the release of proinflammatory cytokines. This narrative review is aimed at summarizing and updating the latest literature on the association between periodontopathic microbiota and atherosclerosis and providing possible therapeutic ideas for clinicians regarding atherosclerosis prevention and treatment.


Asunto(s)
Aterosclerosis/fisiopatología , Inflamación/metabolismo , Microbiota/inmunología , Enfermedades Periodontales/microbiología , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Factores de Riesgo , Receptor Toll-Like 4/metabolismo
6.
Biotechnol J ; 15(8): e1900456, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32107862

RESUMEN

Injectable shear-thinning biomaterials (iSTBs) have great potential for in situ tissue regeneration through minimally invasive therapeutics. Previously, an iSTB was developed by combining gelatin with synthetic silicate nanoplatelets (SNPs) for potential application to hemostasis and endovascular embolization. Hence, iSTBs are synthesized by varying compositions of gelatin and SNPs to navigate their material, mechanical, rheological, and bioactive properties. All compositions (each component percentage; 1.5-4.5%/total solid ranges; 3-9%) tested are injectable through both 5 Fr general catheter and 2.4 Fr microcatheter by manual pressure. In the results, an increase in gelatin contents causes decrease in swellability, increase in freeze-dried hydrogel scaffold porosity, increase in degradability and injection force during iSTB fabrication. Meanwhile, the amount of SNPs in composite hydrogels is mainly required to decrease degradability and increase shear thinning properties of iSTB. Finally, in vitro and in vivo biocompatibility tests show that the 1.5-4.5% range gelatin-SNP iSTBs are not toxic to the cells and animals. All results demonstrate that the iSTB can be modulated with specific properties for unmet clinical needs. Understanding of mechanical and biological consequences of the changing gelatin-SNP ratios through this study will shed light on the biomedical applications of iSTB on specific diseases.


Asunto(s)
Materiales Biocompatibles , Gelatina , Silicatos , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Embolización Terapéutica , Gelatina/química , Hemostasis , Hidrogeles , Reología , Silicatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA