Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(11): 3432-3440, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38391135

RESUMEN

Uricase-catalyzed uric acid (UA) degradation has been applied for hyperuricemia therapy, but this medication is limited by H2O2 accumulation, which can cause oxidative stress of cells, resulting in many other health issues. Herein, we report a robust cubic hollow nanocage (HNC) system based on polyvinylpyrrolidone-coated PdPt3 and PdIr3 to serve as highly efficient self-cascade uricase/peroxidase mimics to achieve the desired dual catalysis for both UA degradation and H2O2 elimination. These HNCs have hollow cubic shape with average wall thickness of 1.5 nm, providing desired synergy to enhance catalyst's activity and stability. Density functional theory calculations suggest the PdIr3 HNC surface tend to promote OH*/O* desorption for better peroxidase-like catalysis, while the PdPt3 HNC surface accelerates the UA oxidation by facilitating O2-to-H2O2 conversion. The dual catalysis power demonstrated by these HNCs in cell studies suggests their great potential as a new type of nanozyme for treating hyperuricemia.


Asunto(s)
Hiperuricemia , Peroxidasa , Humanos , Peroxidasa/uso terapéutico , Urato Oxidasa/uso terapéutico , Povidona/uso terapéutico , Hiperuricemia/tratamiento farmacológico , Peróxido de Hidrógeno , Ácido Úrico/metabolismo , Oxidorreductasas , Colorantes
2.
Biomacromolecules ; 25(1): 474-485, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38114427

RESUMEN

Hyaluronic acid and zwitterionic hydrogels are soft materials with poor mechanical properties. The unique structures and physiological properties make them attractive candidates for ideal hydrogel dressings, but the crux of lacking satisfying mechanical strengths and adhesive properties is still pendent. In this study, the physical cross-linking of dipole-dipole interactions of zwitterionic pairs was utilized to enhance the mechanical properties of hydrogels. The hydrogels have been prepared by copolymerizing methacrylate hyaluronic (HAGMA) with carboxybetaine methacrylamide (CBMAA) (the mass ratio of [HAGMA]/[CBMAA] is 2:5, 1:5, 1:10, or 1:20), obtaining HA-CB2.5, HA-CB5.0, HA-CB10.0, or HA-CB20.0 hydrogel. Therein, the HA-CB20.0 hydrogel with a high CBMAA content can generate a strong dipole-dipole interaction to form internal physical cross-links, exhibit stretchability and low elastic modulus, and withstand 99% compressive deformation and cyclic compression under strain at 90%. Moreover, the HA-CB20.0 hydrogel is adhesive to diverse substrates, including skin, glass, stainless steel, and plastic. The synergistic effect of HAGMA and CBMAA shows strong anti-biofouling, high water absorption, biodegradability under hyaluronidase, and biocompatibility.


Asunto(s)
Incrustaciones Biológicas , Ácido Hialurónico , Ácido Hialurónico/química , Metacrilatos , Adhesivos , Cementos de Resina , Hidrogeles/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-38596842

RESUMEN

The interaction between bacteria and the host plays a vital role in the initiation and progression of systemic diseases, including gastrointestinal and oral diseases, due to the secretion of various virulence factors from these pathogens. GroEL, a potent virulence factor secreted by multiple oral pathogenic bacteria, is implicated in the damage of gingival epithelium, periodontal ligament, alveolar bone and other peripheral tissues. However, the underlying biomechanism is still largely unknown. In the present study, we verify that GroEL can trigger the activation of NLRP3 inflammasome and its downstream effector molecules, IL-1ß and IL-18, in human periodontal ligament stem cells (hPDLSCs) and resultantly induce high activation of gelatinases (MMP-2 and MMP-9) to promote the degradation of extracellular matrix (ECM). GroEL-mediated activation of the NLRP3 inflammasome requires the participation of Toll-like receptors (TLR2 and TLR4). High upregulation of TLR2 and TLR4 induces the enhancement of NF-κB (p-p65) signaling and promotes its nuclear accumulation, thus activating the NLRP3 inflammasome. These results are verified in a rat model with direct injection of GroEL. Collectively, this study provides insight into the role of virulence factors in bacteria-induced host immune response and may also provide a new clue for the prevention of periodontitis.

4.
Int Endod J ; 57(5): 549-565, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332717

RESUMEN

AIM: To explore the influence of PDGF-AA on cell communication between human dental pulp stem cells (DPSCs) by characterizing gap junction intercellular communication (GJIC) and its potential biomechanical mechanism. METHODOLOGY: Quantitative real-time PCR was used to measure connexin family member expression in DPSCs. Cell migration and CCK-8 assays were utilized to examine the influence of PDGF-AA on DPSC migration and proliferation. A scrape loading/dye transfer assay was applied to evaluate GJIC triggered by PDGF-AA, a PI3K/Akt signalling pathway blocker (LY294002) and a PDGFR-α blocker (AG1296). Western blotting and immunofluorescence were used to test the expression and distribution of the Cx43 and p-Akt proteins in DPSCs. Scanning electron microscopy (SEM) and immunofluorescence were used to observe the morphology of GJIC in DPSCs. RESULTS: PDGF-AA promoted gap junction formation and intercellular communication between human dental pulp stem cells. PDGF-AA upregulates the expression of Cx43 to enhance gap junction formation and intercellular communication. PDGF-AA binds to PDGFR-α and activates PI3K/Akt signalling to regulate cell communication. CONCLUSIONS: This research demonstrated that PDGF-AA can enhance Cx43-mediated GJIC in DPSCs via the PDGFR-α/PI3K/Akt axis, which provides new cues for dental pulp regeneration from the perspective of intercellular communication.


Asunto(s)
Pulpa Dental , Factor de Crecimiento Derivado de Plaquetas , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Conexina 43/metabolismo , Fosfatidilinositol 3-Quinasas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Regeneración , Células Madre/metabolismo
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 224-229, 2024 Jan 20.
Artículo en Zh | MEDLINE | ID: mdl-38322535

RESUMEN

Jawbone injuries resulting from trauma, diseases, and surgical resections are commonly seen in clinical practice, necessitating precise and effective strategies for repair and reconstruction to restore both function and aesthetics. The precise and effective repair and the reconstruction of jawbone injuries pose a significant challenge in the field of oral and maxillofacial surgery, owing to the unique biomechanical characteristics and physiological functions of the jawbone. The natural repair process following jawbone injuries involves stages such as hematoma formation, inflammatory response, ossification, and bone remodeling. Bone morphogenetic proteins (BMPs), transforming growth factor beta (TGF-ß), vascular endothelial growth factor (VEGF), and other growth factors play crucial roles in promoting jawbone regeneration. Cytokines such as interleukins and tumor necrosis factor play dual roles in regulating inflammatory response and bone repair. In recent years, significant progress in molecular biology research has been made in the field of jawbone repair and reconstruction. Tissue engineering technologies, including stem cell therapy, bioactive scaffolds, and growth factor delivery systems, have found important applications in jawbone repair. However, the intricate molecular regulatory mechanisms involved in the complex jawbone repair and reconstruction methods are not fully understood and still require further research. Future research directions will be focused on the precise control of these molecular processes and the development of more efficient combination therapeutic strategies to promote the effective and functional reconstruction of the jawbone. This review aims to examine the latest findings on the molecular regulatory mechanisms of the repair and reconstruction of jawbone injuries and the therapeutic strategies. The conclusions drawn in this article provide a molecular-level understanding of the repair of jawbone injuries and highlight potential directions for future research.


Asunto(s)
Osteogénesis , Factor A de Crecimiento Endotelial Vascular , Remodelación Ósea , Péptidos y Proteínas de Señalización Intercelular , Ingeniería de Tejidos , Factor de Crecimiento Transformador beta , Humanos
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 475-481, 2024 Mar 20.
Artículo en Zh | MEDLINE | ID: mdl-38645850

RESUMEN

Lipid droplets are dynamic multifunctional organelles composed of a neutral lipid core and a phospholipid monolayer membrane modified by a specific set of proteins. PAT family proteins are the most characteristic lipid droplet proteins, playing an important role in regulating lipid droplet structure, function, and metabolism. The biogenesis of lipid droplets involves neutral lipid synthesis and the nucleation, budding, and growth of the lipid droplets. Lipid droplets not only serve as the energy metabolism reserve of cells but also participate in intracellular signal transduction and the development of inflammation and tumor. Lipid droplets are closely connected to and interact with various organelles, regulating the division, the transportation, and the genetics of organelles. The complexity of lipid droplets biogenesis and the diversity of their functions may have provided a physiological basis for the pathogenesis and development of diseases, but further research is needed in order to better understand the relevant processes. Published findings have helped elucidate the association between lipid droplets and diseases, such as obesity, non-alcoholic fatty liver disease, neurodegenerative disease, cancer, and cardiovascular disease, but the relationship between lipid droplets and oral diseases has not been fully studied. Topics that warrant further research include the role and mechanisms of lipid droplets in the pathogenesis and development of oral diseases, the relationship between oral diseases and systemic diseases, and translation of the effect of lipid droplets on oral diseases into valuable clinical diagnostic and treatment methods. Herein, we reviewed the biogenesis and functions of lipid droplets and the progress in research concerning lipid droplets in oral diseases, including mouth neoplasms, periodontitis, and dental caries.


Asunto(s)
Gotas Lipídicas , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Enfermedades de la Boca/metabolismo , Obesidad/metabolismo
7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 31-38, 2024 Jan 20.
Artículo en Zh | MEDLINE | ID: mdl-38322519

RESUMEN

Alveolar bone, the protruding portion of the maxilla and the mandible that surrounds the roots of teeth, plays an important role in tooth development, eruption, and masticatory performance. In oral inflammatory diseases, including apical periodontitis, periodontitis, and peri-implantitis, alveolar bone defects cause the loosening or loss of teeth, impair the masticatory function, and endanger the physical and mental health of patients. However, alveolar bone restoration is confronted with great clinical challenges due to the the complicated effect of the biological, mechanical, and chemical factors in the oral microenvironment. An in-depth understanding of the underlying molecular regulatory mechanisms will contribute to the exploration of new targets for alveolar bone restoration. Recent studies have shown that Notch, Wnt, Toll-like receptor (TLR), and nuclear factor-κB (NF-κB) signaling pathways regulate the proliferation, differentiation, apoptosis, and autophagy of osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, and adaptive immune cells, modulate the expression of inflammatory mediators, affect the balance of the receptor activator for nuclear factor-κB ligand/receptor activator for nuclear factor-κB/osteoprotegerin (RANKL/RANK/OPG) system, and ultimately participate in alveolar bone restoration. Additionally, alveolar bone restoration involves AMP-activated protein kinase (AMPK), phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT), Hippo/YAP, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and transforming growth factor ß (TGF-ß) signaling pathways. However, current studies have failed to construct mature molecular regulatory networks for alveolar bone restoration. There is an urgent need for further research on the molecular regulatory mechanisms of alveolar bone restoration by using new technologies such as single-cell transcriptome sequencing and spatial transcriptome sequencing.


Asunto(s)
FN-kappa B , Fosfatidilinositol 3-Quinasas , Humanos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Osteoprotegerina/metabolismo , Osteoprotegerina/farmacología , Huesos/metabolismo , Transducción de Señal , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Ligando RANK/farmacología
8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 469-474, 2024 Mar 20.
Artículo en Zh | MEDLINE | ID: mdl-38645865

RESUMEN

Craniomaxillofacial development involves a series of highly ordered temporal-spatial cellular differentiation processes in which a variety of cell signaling factors, such as fibroblast growth factors, play important regulatory roles. As a classic fibroblast growth factor, fibroblast growth factor 7 (FGF7) serves a wide range of regulatory functions. Previous studies have demonstrated that FGF7 regulates the proliferation and migration of epithelial cells, protects them, and promotes their repair. Furthermore, recent findings indicate that epithelial cells are not the only ones subjected to the broad and powerful regulatory capacity of FGF7. It has potential effects on skeletal system development as well. In addition, FGF7 plays an important role in the development of craniomaxillofacial organs, such as the palate, the eyes, and the teeth. Nonetheless, the role of FGF7 in oral craniomaxillofacial development needs to be further elucidated. In this paper, we summarized the published research on the role of FGF7 in oral craniomaxillofacial development to demonstrate the overall understanding of FGF7 and its potential functions in oral craniomaxillofacial development.


Asunto(s)
Factor 7 de Crecimiento de Fibroblastos , Humanos , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Factor 7 de Crecimiento de Fibroblastos/genética , Animales , Cráneo/crecimiento & desarrollo , Cráneo/metabolismo , Desarrollo Maxilofacial/fisiología , Diente/metabolismo , Diente/crecimiento & desarrollo
9.
Oral Dis ; 29(3): 1184-1196, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34874590

RESUMEN

OBJECTIVES: The objectives of this study were to explore the role and related mechanism of berberine in repairing bone destruction in apical periodontics (AP). MATERIALS AND METHODS: AP was established in 14 of 21 male Wistar rats (four weeks of age; 70-80 g) for 3 weeks. The canals were cleaned and administered berberine (2 mg/ml; n = 7) or calcium hydroxide (100 mg/ml; control; n = 7), followed by glass ionomer cement sealing. After 3 weeks, specimen collection followed by micro-computed tomography (µ-CT) and histological staining was performed, including haematoxylin and eosin staining, Masson's trichrome staining, tartrate-resistant acid phosphatase staining, immunohistochemistry and immunofluorescence histochemistry. RESULTS: µ-CT showed that AP lesion volume reduced in the berberine group. Histopathology showed that berberine decreased the activity and number of osteoclasts but increased the expression of proteins related to osteoblast differentiation, including alkaline phosphatase and osterix. The immune cell, T cell, dendritic cell and macrophage counts were significantly decreased in the berberine group. In the berberine group, the expression of extracellular matrix-degraded proteases, metalloproteinases, was decreased; however, that of extracellular matrix-stable proteases, lysyl oxidases, was increased. CONCLUSIONS: Berberine controlled the inflammatory response and regulated bone metabolism in AP by reducing metalloproteinase expression and increasing lysyl oxidases expression.


Asunto(s)
Berberina , Periodontitis Periapical , Ratas , Animales , Masculino , Berberina/farmacología , Ratas Wistar , Microtomografía por Rayos X , Periodontitis Periapical/metabolismo , Osteoclastos/patología , Matriz Extracelular/metabolismo , Oxidorreductasas
10.
BMC Anesthesiol ; 23(1): 341, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817075

RESUMEN

BACKGROUND: Moderate to deep sedation is required for dental treatment of children with dental anxiety. Midazolam is the most commonly used sedative, whereas intranasal dexmedetomidine is increasingly used in pediatric sedation. OBJECTIVE: The aim of this trial was to compare the sedative efficacy of oral midazolam alone with that of intranasal dexmedetomidine plus oral midazolam during dental treatment of children with dental anxiety. DESIGN: In total, 83 children (aged 3-12 years) scheduled to undergo dental sedation were randomized to receive oral midazolam (0.5 mg/kg) and intranasal placebo, or oral midazolam (0.5 mg/kg) plus intranasal dexmedetomidine (2 µg/kg). The primary outcome was the rate of successful sedation for dental treatment. Secondary outcomes were the onset time and adverse events during and after treatment. Data analyses involved descriptive statistics and nonparametric tests. RESULTS: The rate of successful sedation was significantly higher in combination group (P = 0.007), although the sedation onset time was significantly longer in combination group (17.5 ± 2.4 min) than in monotherapy group (15.7 ± 1.8) (P = 0.003). No children required medical intervention or oxygen therapy for hemodynamic disturbances, and the incidences of adverse events had no significant difference between groups (P = 0.660). CONCLUSION: Combined treatment with oral midazolam (0.5 mg/kg) and intranasal dexmedetomidine (2 µg/kg) is more significantly effective for managing the behavior of non-cooperative children during dental treatment, compared to oral midazolam (0.5 mg/kg) alone. (Chinese Clinical Trial Registry: ChiCTR2100042300) TRIAL REGISTRATION: ChiCTR2100042300, Clinical trial first registration date: 17/01/2021.


Asunto(s)
Anestesia , Dexmedetomidina , Niño , Humanos , Midazolam/efectos adversos , Dexmedetomidina/efectos adversos , Pacientes Ambulatorios , Hipnóticos y Sedantes/efectos adversos , Administración Intranasal
11.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 426-437, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36825442

RESUMEN

Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that can be recognized by infected host cells and activate the immunoinflammatory response. The purpose of this study is to demonstrate the effect of c-di-AMP on the differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying mechanisms. In the present study, we find that the gingival crevicular fluid (GCF) of patients with chronic periodontitis has a higher expression level of c-di-AMP than that of healthy people. In vitro, c-di-AMP influences the differentiation of hPDLSCs by upregulating Toll-like receptors (TLRs); specifically, it inhibits osteogenic differentiation by activating NF-κB and ERK/MAPK and promotes adipogenic differentiation through the NF-κB and p38/MAPK signaling pathways. Inhibitors of TLRs or activated pathways reduce the changes induced by c-di-AMP. Our results establish the potential correlation among bacterial c-di-AMP, periodontal tissue homeostasis and chronic periodontitis pathogenesis.


Asunto(s)
Periodontitis Crónica , FN-kappa B , Humanos , FN-kappa B/metabolismo , Ligamento Periodontal/metabolismo , Osteogénesis , Periodontitis Crónica/metabolismo , Diferenciación Celular , Células Madre/metabolismo , Receptores Toll-Like/metabolismo , Adenosina Monofosfato/metabolismo , Células Cultivadas
12.
Small ; 18(16): e2107690, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35277914

RESUMEN

Triple-negative breast cancer (TNBC) is the most lethal subtypes of breast cancer. Although chemotherapy is considered the most effective strategy for TNBC, most chemotherapeutics in current use are cytotoxic, meaning they target antiproliferative activity but do not inhibit tumor cell metastasis. Here, a TNBC-specific targeted liposomal formulation of epalrestat (EPS) and doxorubicin (DOX) with synergistic effects on both tumor cell proliferation and metastasis is described. These liposomes are biocompatible and effectively target tumor cells owing to hyaluronic acid (HA) modification on their surface. This active targeting, mediated by CD44-HA interaction, allows DOX and EPS to be delivered simultaneously to tumor cells in vivo, where they suppress not only TNBC tumor growth and the epithelial-mesenchymal transition, but also cancer stem cells, which collectively suppress tumor growth and metastasis of TNBC and may also act to prevent relapse of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Humanos , Ácido Hialurónico , Liposomas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
13.
Biomacromolecules ; 23(3): 641-660, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35199999

RESUMEN

Noncovalent interactions can maintain the three-dimensional structures of biomacromolecules (e.g., polysaccharides and proteins) and control specific recognition in biological systems. Supramolecular chemistry was gradually developed as a result, and this led to design and application of self-healing materials. Self-healing materials have attracted attention in many fields, such as coatings, bionic materials, elastomers, and flexible electronic devices. Nevertheless, self-healing materials for biomedical applications have not been comprehensively summarized, even though many reports have been focused on specific areas. In this Review, we first introduce the different categories of supramolecular forces used in preparing self-healing materials and then describe biological applications developed in the last 5 years, including antibiofouling, smart drug/protein delivery, wound healing, electronic skin, cartilage lubrication protection, and tissue engineering scaffolds. Finally, the limitations of current biomedical applications are indicated, key design points are offered for new biological self-healing materials, and potential directions for biological applications are highlighted.


Asunto(s)
Elastómeros , Polímeros , Elastómeros/química , Hidrogeles/química , Polímeros/química , Ingeniería de Tejidos , Andamios del Tejido
14.
J Integr Plant Biol ; 64(9): 1739-1754, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35731022

RESUMEN

The ginsenoside Rg3 found in Panax species has extensive pharmacological properties, in particular anti-cancer effects. However, its natural yield in Panax plants is limited. Here, we report a multi-modular strategy to improve yields of Rg3 in a Panax ginseng chassis, combining engineering of triterpene metabolism and overexpression of a lignin biosynthesis gene, phenylalanine ammonia lyase (PAL). We first performed semi-rational design and site mutagenesis to improve the enzymatic efficiency of Pq3-O-UGT2, a glycosyltransferase that directly catalyzes the biosynthesis of Rg3 from Rh2 . Next, we used clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to knock down the branch pathway of protopanaxatriol-type ginsenoside biosynthesis to enhance the metabolic flux of the protopanaxadiol-type ginsenoside Rg3 . Overexpression of PAL accelerated the formation of the xylem structure, significantly improving ginsenoside Rg3 accumulation (to 6.19-fold higher than in the control). We combined overexpression of the ginsenoside aglycon synthetic genes squalene epoxidase, Pq3-O-UGT2, and PAL with CRISPR/Cas9-based knockdown of CYP716A53v2 to improve ginsenoside Rg3 accumulation. Finally, we produced ginsenoside Rg3 at a yield of 83.6 mg/L in a shake flask (7.0 mg/g dry weight, 21.12-fold higher than with wild-type cultures). The high-production system established in this study could be a potential platform to produce the ginsenoside Rg3 commercially for pharmaceutical use.


Asunto(s)
Ginsenósidos , Panax , Ginsenósidos/metabolismo , Lignina/metabolismo , Panax/química , Panax/genética , Panax/metabolismo , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo
15.
World J Microbiol Biotechnol ; 38(4): 73, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35288779

RESUMEN

Chitosan (CS) is a kind of high molecular polymer with antibacterial properties. A copolymer with high bacteriostatic activity can be formed by grafting phenolic acid compounds into the chitosan molecular chain, which can inhibit the growth of dominant spoilage bacteria in aquatic products. The study aimed to investigate the antibacterial effect and mechanism of chitosan-grafted-phenolic acid copolymers on Shewanella putrefaciens (S. putrefaciens). CS-grafted-protocatechuic acid (CS-g-PA) and CS-grafted-gallic acid (CS-g-GA) were attained by EDC/NHS coupling reaction. The antibacterial tests indicated that CS-g-PA and CS-g-GA had the same minimum inhibitory concentration (MIC) (1.25 mg/mL) and minimum bactericidal concentration (MBC) (5.0 mg/mL) against S. putrefaciens. According to the change trend of growth curve, the growth of S. putrefaciens was significantly restrained under 2MIC graft copolymers (P < 0.05). Moreover, the increment of alkaline phosphatase (AKPase) activity and electrical conductivity demonstrated that the cell wall and membrane permeability of S. putrefaciens were damaged respectively. In addition, the increase of lactate dehydrogenase (LDHase) activity, protein and nucleic acid absorbance and the decrease of adenosine triphosphatase (ATPase) activity suggested that the cell membrane was incomplete and poor fluidity. The irregular shape of bacteria and the outflow of intercellular contents were also observed from scanning electron microscope (SEM). The above results manifested a great potential of CS-g-PA and CS-g-GA for use as food preservatives to aquatic products.


Asunto(s)
Quitosano , Shewanella putrefaciens , Membrana Celular , Quitosano/farmacología , Hidroxibenzoatos , Permeabilidad , Polímeros/farmacología
16.
Nanotechnology ; 32(24)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33636714

RESUMEN

Intracellular pH plays a significant role in all cell activities. Due to their precise imaging capabilities, fluorescent probes have attracted much attention for the investigation of pH-regulated processes. Detecting intracellular pH values with high throughput is critical for cell research and applications. In this work, hybrid semiconducting polymer dots (Pdots) were developed and characterized and were applied for cell imaging and exclusive ratiometric sensing of intracellular pH values. The reported Pdots were prepared by blending a synthesized block polymer (POMF) and a semiconducting polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) to construct a fluorescence resonance energy transfer system for ratiometric sensing. Pdots showed many advantages, including high brightness, excellent photostability and biocompatibility, giving the pH probe high sensitivity and good stability. Our results proved the capability of POMF-MEHPPV Pdots for the detection of pH in living cells.


Asunto(s)
Técnicas Citológicas/métodos , Colorantes Fluorescentes/química , Polivinilos/química , Puntos Cuánticos/química , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/análisis , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Puntos Cuánticos/análisis
17.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(3): 416-422, 2021 May.
Artículo en Zh | MEDLINE | ID: mdl-34018359

RESUMEN

OBJECTIVE: To investigate the influence of Runt-related transcription factor 1 (RUNX1) on the proliferation, osteogenic differentiation and adipogenic differentiation of dental pulp stem cells (DPSC) in vitro. METHODS: DPSCs were transfected through lentiviral vector carrying the target gene RUNX1 and green fluorescent protein (GFP). After 48 h, transfection efficiency was determined with the fluorescent marking of GFP and Western blot. The effect of the overexpression of RUNX1 on DPSC proliferation and colony formation was determined with CCK-8 and colony formation assay; cell cycle of DPSC was detected by flow cytometry. RUNX1 siRNA was transfected into the DPSCs. After mineralized induction, the effect of RUNX1 overexpression/silencing on the osteogenetic differentiation of DPSC was tested by alkaline phosphatase (ALP) staining and alizarin red staining. After adipogenic induction, oil red O staining was done in order to observe the effect of overexpression/silencing of RUNX1 on the adipogenic differentiation of DPSC. RESULTS: RUNX1 protein was overexpressed in DPSC after lentiviral transfection. Fluorescent test showed successful transfection of lentiviral transfection and over 70% of the cells showed stable expression of GFP protein. The proliferation and colony-formation efficiency of DPSC was enhanced significantly and the proportion of DPSCs in the S phase was significantly increased in the RUNX1-overexpessed group ( P<0.05). ALP activity and mineralized nodule formation ability increased, while lipid droplets decreased in the RUNX1-overexpessed group ( P<0.05). ALP activity and mineralized nodule formation ability decreased, while lipid droplets increased in the RUNX1 knockdown group ( P<0.05) . CONCLUSION: RUNX1 promotes DPSC proliferation and osteogenic differentiation while it inhibits DPSC adipogenic differentiation.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Osteogénesis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Pulpa Dental , Células Madre
18.
Ecotoxicol Environ Saf ; 190: 110133, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31896473

RESUMEN

Microplastics (MP) are receiving increased attention as a harmful environmental pollutant, however information on the reproduction toxicity of MP in terrestrial animals, especially mammals, is limited. In this experiment, we investigated the impact of polystyrene microplastics (micro-PS) on the reproductive system of male mice. Healthy Balb/c mice were exposed to saline or to different doses of micro-PS for 6 weeks. The results showed that micro-PS exposure resulted in a significant decrease in the number and motility of sperm, and a significant increase in sperm deformity rate. We also detected a decrease in the activity of the sperm metabolism-related enzymes, succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH), and a decrease in the serum testosterone content in the micro-PS exposure group. We found that micro-PS exposure caused oxidative stress and activated JNK and p38 MAPK. In addition, we found that when N-acetylcysteine (NAC) scavenges ROS, and when the p38 MAPK-specific inhibitor SB203580 inhibits p38MAPK, the micro-PS-induced sperm damage is alleviated and testosterone secretion improves. In conclusion, our findings suggest that micro-PS induces reproductive toxicity in mice through oxidative stress and activation of the p38 MAPK signaling pathways.


Asunto(s)
Microplásticos/toxicidad , Estrés Oxidativo/fisiología , Poliestirenos/toxicidad , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Acetilcisteína/farmacología , Animales , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Plásticos , Reproducción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Espermatozoides/metabolismo
19.
Molecules ; 25(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947655

RESUMEN

Proliposomes were used to improve the solubility and oral bioavailability of nifedipine. Nifedipine proliposomes were prepared by methanol injection-spray drying method. The response surface method was used to optimize formulation to enhance the encapsulation efficiency (EE%) of nifedipine. The particle size of nifedipine proliposomes after rehydration was 114 nm. Surface morphology of nifedipine proliposomes was observed by a scanning electron microscope (SEM) and interaction of formulation ingredients was assessed by differential scanning calorimetry (DSC). The solubility of nifedipine is improved 24.8 times after forming proliposomes. In vitro release experiment, nifedipine proliposomes had a control release effect, especially in simulated gastric fluid. In vivo, nifedipine proliposomes significantly improved the bioavailability of nifedipine. The area under the concentration-time curve (AUC0-∞) of nifedipine proliposomes was about 10 times than nifedipine after oral administration. The elimination half-life (T1/2ß) of nifedipine was increased from 1.6 h to 6.6 h. In conclusion, proliposomes was a promising system to deliver nifedipine through oral route and warranted further investigation.


Asunto(s)
Composición de Medicamentos , Liberación de Fármacos , Tracto Gastrointestinal/metabolismo , Liposomas/química , Nifedipino/química , Nifedipino/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Química Farmacéutica , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nifedipino/administración & dosificación , Ratas , Ratas Wistar , Solubilidad , Vasodilatadores/administración & dosificación , Vasodilatadores/química , Vasodilatadores/farmacocinética
20.
Nano Lett ; 18(10): 6207-6213, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30260652

RESUMEN

Inspired by the fact that chitosan is a representative constituent of the ectocellular structure of Cryptococcus neoformans and a typical biomaterial for improving drug oral absorption, we designed an elegant and efficient C. neoformans-targeted drug delivery system via oral administration. A chitosan-binding peptide screened by phage display was used as the targeting moiety, followed by conjugation to the surface of poly(lactic- co-glycolic acid) nanoparticles as the drug carrier, which was then incubated with free chitosan. The noncovalently bound chitosan adheres to mucus layers and significantly enhances penetration of nanoparticles through the oral absorption barrier into circulation and then re-exposed the targeting ligand for later recognition of the fungal pathogen at the site of infection. After loading itraconazole as a model drug, our drug delivery system remarkably cleared lung infections of C. neoformans and increased survival of model mice. Currently, targeted drug delivery is mainly performed intravenously; however, the system described in our study may provide a universal means to facilitate drug targeting to specific tissues and disease sites by oral administration and may be especially powerful in the fight against increasingly severe fungal infections.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Neumonía Bacteriana/tratamiento farmacológico , Poliésteres/administración & dosificación , Administración Oral , Animales , Quitosano/administración & dosificación , Quitosano/química , Cryptococcus/efectos de los fármacos , Cryptococcus/patogenicidad , Humanos , Ligandos , Ratones , Nanopartículas/química , Péptidos/administración & dosificación , Péptidos/química , Neumonía Bacteriana/microbiología , Poliésteres/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA