Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 25(2): 1180-1190, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38240673

RESUMEN

In recent years, the utilization of medical devices has gradually increased and implantation procedures have become common treatments. However, patients are susceptible to the risk of implant infections. This study utilized chemical grafting to immobilize polyethylenimine (QPEI) and hyaluronic acid (HA) on the surface of the mesh to improve biocompatibility while being able to achieve antifouling antimicrobial effects. From the in vitro testing, PP-PDA-Q-HA exhibited a high antibacterial ratio of 93% against S. aureus, 93% against E. coli, and 85% against C. albicans. In addition, after five rounds of antimicrobial testing, the coating continued to exhibit excellent antimicrobial properties; PP-PDA-Q-HA also inhibits the formation of bacterial biofilms. In addition, PP-PDA-Q-HA has good hemocompatibility and cytocompatibility. In vivo studies in animal implantation infection models also demonstrated the excellent antimicrobial properties of PP-PDA-Q-HA. Our study provides a promising strategy for the development of antimicrobial surface medical materials with excellent biocompatibility.


Asunto(s)
Antiinfecciosos , Incrustaciones Biológicas , Animales , Humanos , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas , Antiinfecciosos/farmacología , Hernia , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Propiedades de Superficie
2.
Small ; 18(27): e2201147, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35686342

RESUMEN

Rupture of tendons and ligaments (T/L) is a major clinical challenge due to T/L possess anisotropic mechanical properties and hierarchical structures. Here, to imitate these characteristics, an approach is presented by fabricating hybrid nanofibrous composites. First, hybrid fiber-reinforced yarns are fabricated via successively electrospinning poly(L-lactide-co-ε-caprolactone) (PLCL) and gelatin (Ge) nanofibers onto polyethylene terephthalate (PET) fibers to improve biodurability and biocompatibility. Then, by comparing different manufacturing methods, the knitted structure succeeds in simulating anisotropic mechanical properties, even being stronger than natural ligaments, and possessing comfort compliance superior to clinically used ligament advanced reinforcement system (LARS) ligament. Moreover, after inoculation with tendon-derived stem cells and transplantation in vivo, hybrid nanofibrous composites are integrated with native tendons to guide surrounding tissue ingrowth due to the highly interconnected and porous structure. The knitted hybrid nanofibrous composites are also ligamentized and remodeled in vivo to promote tendon regeneration. Specifically, after the use of optimized anisotropic hybrid nanofibrous composites to repair tendon, the deposition of tendon-associated extracellular matrix proteins is more significant. Thus, this study indicates a strategy of manufacturing anisotropic hybrid nanofibrous composites with superior mechanical properties and good histocompatibility for clinical reconstruction.


Asunto(s)
Nanofibras , Ligamentos , Nanofibras/química , Poliésteres/química , Regeneración , Tendones , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
3.
Acta Biomater ; 140: 233-246, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852300

RESUMEN

Ligament injuries are common in sports and other rigorous activities. It is a great challenge to achieve ligament regeneration after an injury due the avascular structure and low self-renewal capability. Herein, we developed vascular endothelial growth factor (VEGF)-binding aligned electrospun poly(caprolactone)/gelatin (PCL/Gel) scaffolds by incorporating prominin-1-binding peptide (BP) sequence and exploited them for patellar ligament regeneration. The adsorption of BP onto scaffolds was discerned by various techniques, such as Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and confocal laser scanning microscope. The accumulation of VEGF onto scaffolds correlated with the concentration of the peptide in vitro. BP-anchored PCL/Gel scaffolds (BP@PCL/Gel) promoted the tubular formation of human umbilical vein endothelial cells (HUVECs) and wound healing in vitro. Besides, BP containing scaffolds exhibited higher content of CD31+ cells than that of the control scaffolds at 1 week after implantation in vivo. Moreover, BP containing scaffolds improved biomechanical properties and facilitated the regeneration of matured collagen in patellar ligament 4 weeks after implantation in mice. Overall, this strategy of peptide-mediated orchestration of VEGF provides an enticing platform for the ligament regeneration, which may also have broad implications for tissue repair applications. STATEMENT OF SIGNIFICANCE: Ligament injuries are central to sports and other rigorous activities. Given to the avascular nature and poor self-healing capability of injured ligament tissues, it is a burgeoning challenge to fabricate tissue-engineered scaffolds for ligament reconstruction. Vascular endothelial growth factor (VEGF) is pivotal to the neo-vessel formation. However, the high molecular weight of VEGF as well as its short half-life in vitro and in vivo limits its therapeutic potential. To circumvent these limitations, herein, we functionalized aligned electrospun polycaprolactone/gelatin (PCL/Gel)-based scaffolds with VEGF-binding peptide (BP) and assessed their biocompatibility and performance in vitro and in vivo. BP-modified scaffolds accumulated VEGF, improved tube formation of HUVECs, and induced wound healing in vitro, which may have broad implications for regenerative medicine and tissue engineering.


Asunto(s)
Nanofibras , Ligamento Rotuliano , Animales , Gelatina/química , Gelatina/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Nanofibras/química , Poliésteres/química , Poliésteres/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Cicatrización de Heridas
4.
J Colloid Interface Sci ; 603: 94-109, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34197994

RESUMEN

To achieve optimal functional recovery of articular cartilage, scaffolds with nanofibrous structure and biological function have been widely pursued. In this study, two-dimensional electrospun poly(l-lactide-co-ε-caprolactone)/silk fibroin (PLCL/SF) scaffolds (2DS) were fabricated by dynamic liquid support (DLS) electrospinning system, and then cross-linked with hyaluronic acid (HA) to further mimic the microarchitecture of native cartilage. Subsequently, three-dimensional PLCL/SF scaffolds (3DS) and HA-crosslinked three-dimensional scaffolds (3DHAS) were successfully fabricated by in situ gas foaming and freeze-drying. 3DHAS exhibited better mechanical properties than that of the 3DS. Moreover, all scaffolds exhibited excellent biocompatibility in vitro. 3DHAS showed better proliferation and phenotypic maintenance of chondrocytes as compared to the other scaffolds. Histological analysis of cell-scaffold constructs explanted 8 weeks after implantation demonstrated that both 3DS and 3DHAS scaffolds formed cartilage-like tissues, and the cartilage lacuna formed in 3DHAS scaffolds was more mature. Moreover, the reparative capacity of scaffolds was discerned after implantation in the full-thickness articular cartilage model in rabbits for up to 12 weeks. The macroscopic and histological results exhibited typical cartilage-like character and well-integrated boundary between 3DHAS scaffolds and the host tissues. Collectively, biomimetic 3DHAS scaffolds may be promising candidates for cartilage tissue regeneration applications.


Asunto(s)
Cartílago Articular , Nanofibras , Animales , Poliésteres , Porosidad , Conejos , Ingeniería de Tejidos , Andamios del Tejido
5.
Colloids Surf B Biointerfaces ; 201: 111637, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33639507

RESUMEN

Electrospun nanofibers emulate extracellular matrix (ECM) morphology and architecture; however, small pore size and tightly-packed fibers impede their translation in tissue engineering. Here we exploited in situ gas foaming to afford three-dimensional (3D) poly(L-lactide-co-ε-caprolactone)/silk fibroin (PLCL/SF) scaffolds, which exhibited nanotopographic cues and a multilayered structure. The addition of SF improved the hydrophilicity and biocompatibility of 3D PLCL scaffolds. Three-dimensional scaffolds exhibited larger pore size (38.75 ± 9.78 µm2) and high porosity (87.1% ± 1.5%) than that of their 2D counterparts. 3D scaffolds also improved the deposition of ECM components and neo-vessel regeneration as well as exhibited more numbers of CD163+/CCR7+ cells after 2 weeks implantation in a subcutaneous model. Collectively, 3D PLCL/SF scaffolds have broad implications for regenerative medicine and tissue engineering applications.


Asunto(s)
Fibroínas , Nanofibras , Caproatos , Dioxanos , Lactonas , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido
6.
Biomater Sci ; 8(16): 4413-4425, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32648862

RESUMEN

Tendon injury is common in sports and other rigorous activities, which may result in dysfunction and disability. Recently, scaffolds with a knitted structure have been widely applied for tendon tissue engineering. The purpose of this study was to fabricate a novel knitted tendon scaffold made of microfiber/nanofiber core-sheath yarns and evaluate the biocompatibility and the effect of tenogenic differentiation and tendon tissue regeneration in vitro and in vivo. Poly(ε-caprolactone) (PCL) microfibers, PCL microfibers-PCL nanofibers (PCL-PCL) and PCL microfiber-silk fibroin/poly(l-lactic acid-co-ε-caprolactone) nanofiber (SF/PLCL) core-sheath yarns were fabricated and then knitted with an automatic knitting machine to produce PCL, PCL-PCL and PCL-SF/PLCL fabric scaffolds. The characterization of the scaffolds was performed by using scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy and an universal mechanical instrument. The in vitro experiment showed that rabbit bone marrow stem cells seeded on the scaffolds exhibited an elongated morphology and proliferated better in the PCL-SF/PLCL group, as compared to the PCL and PCL-PCL groups. Moreover, the PCL-SF/PLCL scaffold promoted the tenogenic differentiation of the cells for the highest expression levels of the tendon-related genes through down-regulating p-ERK1/2 expression among the three groups. Furthermore, the in vivo study in a rabbit patellar defect model demonstrated that the PCL-SF/PLCL scaffold could enhance the tissue regeneration and remodeling process as indicated by the better structural and biomechanical properties according to the results of histology, immunohistochemistry, transmission electron microscope examination and biomechanical tests. Therefore, the PCL-SF/PLCL scaffold is proved to be a promising biomaterial for tendon tissue engineering and a potential candidate for clinical treatment of tendon injury in the future.


Asunto(s)
Fibroínas , Nanofibras , Animales , Proliferación Celular , Poliésteres , Conejos , Tendones , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA