Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 19(1): 195, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193184

RESUMEN

BACKGROUND: The biomedical field has used gold nanorods (GNRs) for decades; however, clinical trials and translation is limited except gold nanoshells. The preparation of gold nanoshells is more complex than that of polyethylene glycol-modified GNRs (PEG-GNRs), and it is difficult to ensure uniform thickness. It is important to encourage and broaden the use of the star member (PEG-GNRs) of gold nanoparticles family for clinical translation. Existing studies on PEG-GNRs are limited with no relevant systematic progression in non-human primates. Herein, we assessed the systematic biocompatibility of PEG-GNRs in rats and clinically relevant Macaca fascicularis. RESULTS: In this small animal study, we administrated multiple doses of PEG-GNRs to rats and observed good biocompatibility. In the non-human primate study, PEG-GNRs had a longer blood half-life and produced a negligible immune response. Histological analysis revealed no significant abnormality. CONCLUSIONS: PEG-GNRs were well-tolerated with good biocompatibility in both small animals and large non-human primates. The information gained from the comprehensive systemic toxicity assessment of PEG-GNRs in M. fascicularis will be helpful for translation to clinical trials.


Asunto(s)
Materiales Biocompatibles , Oro/química , Nanopartículas del Metal/uso terapéutico , Nanotubos/química , Animales , Cloruros , Compuestos de Oro , Macaca fascicularis , Masculino , Polietilenglicoles , Ratas , Orina
2.
J Oral Rehabil ; 47 Suppl 1: 107-117, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30868603

RESUMEN

AIM: Tissue engineering has been recognised as one of the most effective means to form a new viable tissue for medical purpose. Tissue engineering involves a combination of scaffolds, cells, suitable biochemical and physicochemical factors, and engineering and materials methods. This review covered some biomedicine, such as biomaterials, bioactive factors, and stem cells, and manufacturing technologies used in tissue engineering in the oral maxillofacial region, especially in China. MATERIALS AND METHODS: Data for this review were identified by searches of Web of Science and PubMed, and references from relevant articles using the search terms "biomaterials", "oral tissue regeneration", "bioactive factors" and "stem cells". Only articles published in English between 2013 and 2018 were included. CONCLUSION: The combination of stem cells, bioactive factors and 3D scaffolds could be of far-reaching significance for the future therapies in tissue repair or tissue regeneration. Furthermore, the review also mentions issues that need to be solved in the application of these biomedicines.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Materiales Biocompatibles , Regeneración Ósea , China , Humanos
3.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1799-1808, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28732675

RESUMEN

Cells sense and respond to the biophysical properties of their surrounding environment by interacting with the extracellular matrix (ECM). Therefore, the optimization of these cell-matrix interactions is critical in tissue engineering. The vascular system is adapted to specific functions in diverse tissues and organs. Appropriate arterial-venous differentiation is vital for the establishment of functional vasculature in angiogenesis. Here, we have developed a polydimethylsiloxane (PDMS)-based substrate capable of simulating the physiologically relevant stiffness of both venous (7kPa) and arterial (128kPa) tissues. This substrate was utilized to investigate the effects of changes in substrate stiffness on the differentiation of endothelial progenitor cells (EPCs). As EPCs derived from mouse bone marrow were cultured on substrates of increasing stiffness, the mRNA and protein levels of the specific arterial endothelial cell marker ephrinB2 were found to increase, while the expression of the venous marker EphB4 decreased. Further experiments were performed to identify the mechanotransduction pathway involved in this process. The results indicated that substrate stiffness regulates the arterial and venous differentiation of EPCs via the Ras/Mek pathway. This work shows that modification of substrate stiffness may represent a method for regulating arterial-venous differentiation for the fulfilment of diverse functions of the vasculature.


Asunto(s)
Diferenciación Celular/genética , Células Progenitoras Endoteliales/metabolismo , Efrina-B2/genética , Matriz Extracelular/metabolismo , Receptor EphB4/genética , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Fenómenos Biofísicos/genética , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/metabolismo , Matriz Extracelular/genética , Regulación de la Expresión Génica , Mecanotransducción Celular/genética , Ratones , ARN Mensajero/genética , Especificidad por Sustrato , Ingeniería de Tejidos , Rigidez Vascular/genética , Rigidez Vascular/fisiología , Venas/crecimiento & desarrollo , Venas/metabolismo
4.
Nat Protoc ; 15(8): 2728-2757, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32669637

RESUMEN

Although organic nanomaterials and inorganic nanoparticles possess inherent flexibility, facilitating functional modification, increased intracellular uptake and controllable drug release, their underlying cytotoxicity and lack of specificity still cause safety concerns. Owing to their merits, which include natural biocompatibility, structural stability, unsurpassed programmability, ease of internalization and editable functionality, tetrahedral DNA nanostructures show promising potential as an alternative vehicle for drug delivery and biomedical treatment. Here, we describe the design, fabrication, purification, characterization and potential biomedical applications of a self-assembling tetrahedral DNA nanostructure (TDN)-based multifunctional delivery system. First, relying on Watson-Crick base pairing, four single DNA strands form a simple and typical pyramid structure via one hybridization step. Then, the protocol details four different modification approaches, including replacing a short sequence of a single DNA strand by an antisense peptide nucleic acid, appending an aptamer to the vertex, direct incubation with small-molecular-weight drugs such as paclitaxel and wogonin and coating with protective agents such as cationic polymers. These modified TDN-based complexes promote the intracellular uptake and biostability of the delivered molecules, and show promise in the fields of targeted therapy, antibacterial and anticancer treatment and tissue regeneration. The entire duration of assembly and characterization depends on the cargo type and modification method, which takes from 2 h to 3 d.


Asunto(s)
ADN/química , Portadores de Fármacos/química , Diseño de Fármacos , Nanoestructuras/química , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , ADN/farmacología , Regeneración Tisular Dirigida , Humanos , Células MCF-7 , Peso Molecular , Polietileneimina/química
5.
Curr Stem Cell Res Ther ; 13(7): 600-607, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29756586

RESUMEN

Cartilage, as a nanostructured tissue, because of its awfully poor capacity for inherent regeneration and complete hierarchical structure, is severely difficult to regenerate after damages. Tissue engineering methods have provided a great contribution for cartilage repair. Nanomaterials have special superiority in regulating stem cell behaviors due to their special mechanical and biological properties and biomimetic characteristics. Therefore, they have been given great attention in tissue regeneration. Nanomaterials are divided into organic and inorganic nanomaterials. They provide the microenvironment to support differentiation of stem cells. Nanomaterials inducing stem cells to differentiate into chondrocyte phenotypes would be a benefit for cartilage tissue regeneration, then promoting the development of cartilage tissue engineering. In this review, we summarized the important roles of nanomaterials in chondrogenic differentiation of stem cells.


Asunto(s)
Biopolímeros/farmacología , Cartílago Articular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Nanoestructuras/química , Células Madre/efectos de los fármacos , Animales , Biopolímeros/química , Cartílago Articular/crecimiento & desarrollo , Cartílago Articular/lesiones , Cartílago Articular/cirugía , Diferenciación Celular/efectos de los fármacos , Condrocitos/citología , Condrocitos/fisiología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Nanotubos de Carbono/química , Poliésteres/química , Poliésteres/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Alcohol Polivinílico/química , Alcohol Polivinílico/farmacología , Regeneración/fisiología , Células Madre/citología , Células Madre/fisiología , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA