Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 246: 118200, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220077

RESUMEN

Organic polymers hold great potential in photocatalysis considering their low cost, structural tailorability, and well-controlled degree of conjugation for efficient electron transfer. Among the polymers, Schiff base networks (SNWs) with high nitrogen content have been noticed. Herein, a series of SNWs is synthesized based on the melamine units and dialdehydes with different bonding sites. The chemical and structural variation caused by steric hindrance as well as the related photoelectric properties of the SNW samples are investigated, along with the application exploration on photocatalytic degradation and energy production. The results demonstrate that only SNW-o based on o-phthalaldehyde responds to visible light, which extends to over 550 nm. SNW-o shows the highest tetracycline degradation rate of 0.02516 min-1, under 60-min visible light irradiation. Moreover, the H2O2 production of SNW-o is 2.14 times higher than that of g-C3N4. The enhanced photocatalytic activity could be ascribed to the enlarged visible light adsorption and intramolecular electron transfer. This study indicates the possibility to regulate the optical and electrical properties of organic photocatalysts on a molecular level, providing an effective strategy for rational supramolecular engineering to the applications of organic materials in photocatalysis.


Asunto(s)
Peróxido de Hidrógeno , Bases de Schiff , Luz , Antibacterianos , Polímeros
2.
Arch Oral Biol ; 105: 81-87, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31288145

RESUMEN

AIMS: We investigated the effect of a specific inhibitor of the receptor for advanced glycation (FPS-ZM1) against lipopolysaccharide (LPS)-induced increase in expressions of high mobility group protein B1 (HMGB1) and interleukin-6 (IL-6) in human gingival fibroblasts (HGFs). Furthermore, we explored the potential molecular mechanisms and assessed the involvement of the NF-κB pathway in mediating the changes in the expressions of HMGB1 and IL-6 expression in response to LPS and FPS-ZM1. METHODS: HGFs were cultured with enzymatic digestion-tissue explants method. The proliferation of LPS-stimulated HGFs pretreated with FPS-ZM1 at 24, 48, and 72 h was determined by cell counting kit 8 assay. The expressions of HMGB1 and IL-6 were measured using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Western blot analysis was used to assess the expressions of receptor for advanced glycation end products (RAGE) and NF-κB. RESULTS: LPS enhanced the protein expression of RAGE in HGFs. At the same time, LPS stimulated mRNA and protein expressions of HMGB1 and IL-6 in HGFs. However, pretreatment with FPS-ZM1 attenuated these effects. Pretreatment with FPS-ZM1 (250, 500 nM) significantly inhibited the LPS-induced NF-κB activity. CONCLUSION: FPS-ZM1 down-regulated the LPS-induced HMGB1 and IL-6 expression in HGFs through blocking NF-κB activation. FPS-ZM1 is a promising therapeutic agent for inflammatory diseases caused by oral bacteria.


Asunto(s)
Proteína HMGB1/metabolismo , Interleucina-6/metabolismo , FN-kappa B , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Transducción de Señal , Benzamidas/farmacología , Fibroblastos/efectos de los fármacos , Encía/citología , Humanos , Lipopolisacáridos
3.
Water Res ; 144: 215-225, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30031366

RESUMEN

Water and energy are key sustainability issues that need to be addressed. Photocatalysis represents an attractive means to not only remediate polluted waters, but also harness solar energy. Unfortunately, the employment of photocatalysts remains a practical challenge in terms of high cost, low efficiency, secondary pollution and unexploited water matrices influence. This study investigated the feasibility of photocatalysis to both treat water and produce hydrogen with practical water systems. Polymeric carbon nitride foam (CNF) with large surface area and mesoporous structure was successfully prepared via the bubble-template effect of ammonium chloride decomposition during thermal condensation. The reaction kinetics, mechanisms, and effect of natural water matrices and wastewater on CNF-based photocatalytic removal of tetracycline hydrochloride (TC-HCl) were systematically investigated. Furthermore, the efficiency of clean hydrogen energy from natural water matrices and wastewater was also evaluated. It was found that the photocatalytic performance of CNF for TC-HCl removal was principally affected by calcination temperature in the presence of NH4Cl. The degradation rates of CNF-4 (calcined at 550 °C) were approximately 1.84, 2.49 and 7.47 times than that of the CNF-2 (calcined at 600 °C), CNF-1 (calcined at 500 °C) and GCN (without NH4Cl), respectively. Results indicate that the improved photocatalytic performance was predominantly ascribed to the large specific surface area, increased availability of exposed active sites, and enhanced transport and separation efficiency of the photogenerated carrier. Based on electron spin resonance, chemical trapping experiment and density functional theory calculation, photoinduced oxidizing species (·O2- and holes) initially attacked the C-N-C fragment of TC molecules, which were finally mineralized to CO2, water and inorganic matters. Under the synergistic influence of water constituents (including acidity and alkalinity, ion species and dissolved organic substances), various water matrices greatly affected the degradation rate of TC-HCl, with the highest removal efficiency of 78.9% in natural seawater, followed by reservoir water (75.0%), tap water (62.3%), deionized water (49.8%), reverse osmosis concentrate (32.7%) and pharmaceutical wastewater (18.9%). Interestingly, low amounts of the emerging microplastics slightly improved TC-HCl removal, whereas high amounts (1.428 × 107 P/cm3) restricted removal due to light absorption and the intrinsic adsorption interaction. Moreover, the photocatalysts were able over repeated usage. Notably, the hydrogen yields rates of polymeric carbon nitride foam were 352.2, 299.8, 184.9 and 94.3 µmol/g/h in natural seawater, pharmaceutical wastewater, water from reservoir and tap water, respectively. This study proves the potential of novel nonmetal porous photocatalyst to simultaneously treat wastewater while converting solar energy into clean hydrogen energy.


Asunto(s)
Antibacterianos/aislamiento & purificación , Hidrógeno/metabolismo , Nitrilos/química , Tetraciclinas/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Biocombustibles , Catálisis , Luz , Ósmosis , Procesos Fotoquímicos , Plásticos/química , Polímeros/química , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Purificación del Agua/instrumentación
4.
Sci Rep ; 7: 45157, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28332623

RESUMEN

Abscisic acid (ABA) is an essential phytohormone involved in diverse physiological processes. Although genome-wide analyses of the ABA receptor PYR/PYL/RCAR (PYL) protein/gene family have been performed in certain plant species, little is known about the ABA receptor protein/gene family in the rubber tree (Hevea brasiliensis). In this study, we identified 14 ABA receptor PYL proteins/genes (designated HbPYL1 through HbPYL14) in the most recent rubber tree genome. A phylogenetic tree was constructed, which demonstrated that HbPYLs can be divided into three subfamilies that correlate well with the corresponding Arabidopsis subfamilies. Eight HbPYLs are highly expressed in laticifers. Five of the eight genes are simultaneously regulated by ABA, jasmonic acid (JA) and ethylene (ET). The identification and characterization of HbPYLs should enable us to further understand the role of ABA signal in the rubber tree.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hevea/genética , Hevea/metabolismo , Familia de Multigenes , Reguladores del Crecimiento de las Plantas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Hevea/clasificación , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Regiones Promotoras Genéticas , Goma/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA