Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biomacromolecules ; 25(6): 3784-3794, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38743836

RESUMEN

The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.


Asunto(s)
Regeneración Ósea , Células Madre Mesenquimatosas , Osteogénesis , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido , Animales , Andamios del Tejido/química , Ratas , Regeneración Ósea/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Ingeniería de Tejidos/métodos , Poliésteres/química , Diferenciación Celular , Ratas Sprague-Dawley , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células Cultivadas , Proliferación Celular , Cráneo/lesiones , Cráneo/patología , Durapatita/química , Durapatita/farmacología
2.
Clin Orthop Relat Res ; 477(8): 1947-1955, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31107312

RESUMEN

BACKGROUND: Synovial fluid components, especially lipids, can trigger oxidation of ultrahigh-molecular-weight polyethylene (UHMWPE) artificial joint components in vivo. The use of antioxidants such as vitamin E effectively diminishes the oxidative cascade by capturing free radicals and reducing the oxidation potential of UHMWPE implants. Using a thermo-oxidative aging method, we recently found that tea polyphenols can enhance the oxidation resistance of irradiated UHMWPE in comparison with commercial vitamin E. However, it is yet unknown whether tea polyphenols can reduce lipid-induced oxidation. QUESTIONS/PURPOSES: We explored whether tea polyphenol-stabilized UHMWPE would exhibit (1) lower squalene absorption; (2) stronger oxidation resistance; and (3) lower content of free radicals than vitamin E-stabilized UHMWPE under a physiologically-motivated in vitro accelerated-aging model. METHODS: Tea polyphenol (lipid-soluble epigallocatechin gallate [lsEGCG]) and vitamin E were blended with UHMWPE powders followed by compression molding and electron beam irradiation at 100 and 150 kGy. Small cubes (n = 3, 60 mg, 4 × 4 × 4 mm) cut from the blocks were doped in squalene at 60°, 80°, 100°, and 120° C for 2 hours. Gravimetric change of the cubes after squalene immersion was measured to assess absorption. Thin films (n = 3, ∼60 µm) were also microtomed from the blocks and were doped at 120° C for 24 hours. Oxidation induction time (n = 3, 5 mg of material from the cubes) and incipient oxidation temperature (n = 3, thin films) were obtained to determine the oxidation stability. Signal intensity of the free radicals, obtained by electron spin resonance spectroscopy, was used to qualitatively rank the antioxidant ability of vitamin E and lsEGCG. RESULTS: Squalene absorption was comparable between lsEGCG/UHMWPE and vitamin E/UHMWPE at a given temperature and radiation dose. The oxidation induction time of 100 kGy-irradiated UHMWPE was increased with lsEGCG compared with vitamin E except at 120° C. For example, the oxidation induction time value of 100 kGy-irradiated lsEGCG/UHMWPE immersed at 60 C was 25.3 minutes (24.2-27.8 minutes), which was 8.3 minutes longer than that of 100 kGy-irradiated vitamin E/UHMWPE which was 17.0 minutes (15.0-17.1 minutes) (p = 0.040). After squalene immersion at 120° C, the incipient oxidation temperature of 100 and 150 kGy irradiated lsEGCG/UHMWPE was 234° C (227-240° C) and 227° C (225-229° C), which was higher than vitamin E-stabilized counterparts with value of 217° C (214-229° C; p = 0.095) and 216° C (207-218° C; p = 0.040), respectively. The electron spin resonance signal of 150 kGy irradiated lsEGCG/UHMWPE was qualitatively weaker than that of 150 kGy irradiated vitamin E/UHMWPE. CONCLUSIONS: lsEGCG-stabilized UHMWPE demonstrated higher oxidation resistance than vitamin E-stabilized UHMWPE after squalene immersion, likely because lsEGCG donates more protons to eliminate macroradicals than vitamin E. CLINICAL RELEVANCE: Our in vitro findings provide support that lsEGCG may be effective in protecting against oxidation that may be associated with synovial fluid-associated oxidation of highly crosslinked UHMWPE joint replacement components.


Asunto(s)
Antioxidantes/química , Catequina/análogos & derivados , Prótesis Articulares , Extractos Vegetales/química , Polietilenos/química , Vitamina E/química , Antioxidantes/aislamiento & purificación , Camellia sinensis/química , Catequina/química , Catequina/aislamiento & purificación , Radicales Libres/química , Oxidación-Reducción , Extractos Vegetales/aislamiento & purificación , Polietilenos/efectos de la radiación , Falla de Prótesis , Escualeno/química , Factores de Tiempo
3.
Carbohydr Polym ; 331: 121823, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388030

RESUMEN

Cellulose-based polymer scaffolds are highly diverse for designing and fabricating artificial bone substitutes. However, realizing the multi-biological functions of cellulose-based scaffolds has long been challenging. In this work, inspired by the structure and function of the extracellular matrix (ECM) of bone, we developed a novel yet feasible strategy to prepare ECM-like scaffolds with hybrid calcium/zinc mineralization. The 3D porous structure was formed via selective oxidation and freeze drying of bacterial cellulose. Following the principle of electrostatic interaction, calcium/zinc hybrid hydroxyapatite nucleated, crystallized, and precipitated on the 3D scaffold in simulated physiological conditions, which was well confirmed by morphology and composition analysis. Compared with alternative scaffold cohorts, this hybrid ion-loaded cellulose scaffold exhibited a pronounced elevation in alkaline phosphatase (ALP) activity, osteogenic gene expression, and cranial defect regeneration. Notably, the hybrid ion-loaded cellulose scaffold effectively fostered an M2 macrophage milieu and had a strong immune effect in vivo. In summary, this study developed a hybrid multifunctional cellulose-based scaffold that appropriately simulates the ECM to regulate immunomodulatory and osteogenic differentiation, setting a measure for artificial bone substitutes.


Asunto(s)
Sustitutos de Huesos , Osteogénesis , Osteogénesis/genética , Calcio/metabolismo , Andamios del Tejido/química , Celulosa/farmacología , Celulosa/metabolismo , Zinc/farmacología , Regeneración Ósea , Durapatita/metabolismo , Matriz Extracelular/metabolismo
4.
Adv Healthc Mater ; 13(17): e2304178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38490686

RESUMEN

Structural engineering is an appealing means to modulate osteogenesis without the intervention of exogenous cells or therapeutic agents. In this work, a novel 3D scaffold with anisotropic micropores and nanotopographical patterns is developed. Scaffolds with oriented pores are fabricated via the selective extraction of water-soluble polyethylene oxide from its poly(ε-caprolactone) co-continuous mixture and uniaxial stretching. The plate apatite-like lamellae are subsequently hatched on the pore walls through surface-induced epitaxial crystallization. Such a unique geometric architecture yields a synergistic effect on the osteogenic capability. The prepared scaffold leads to a 19.2% and 128.0% increase in the alkaline phosphatase activity of rat bone mesenchymal stem cells compared to that of the scaffolds with only oriented pores and only nanotopographical patterns, respectively. It also induces the greatest upregulation of osteogenic-related gene expression in vitro. The cranial defect repair results demonstrate that the prepared scaffold effectively promotes new bone regeneration, as indicated by a 350% increase in collagen I expression in vivo compared to the isotropic porous scaffold without surface nanotopology after implantation for 14 weeks. Overall, this work provides geometric motifs for the transduction of biophysical cues in 3D porous scaffolds, which is a promising option for tissue engineering applications.


Asunto(s)
Regeneración Ósea , Células Madre Mesenquimatosas , Osteogénesis , Andamios del Tejido , Animales , Andamios del Tejido/química , Regeneración Ósea/efectos de los fármacos , Ratas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Porosidad , Osteogénesis/efectos de los fármacos , Anisotropía , Ingeniería de Tejidos/métodos , Poliésteres/química , Ratas Sprague-Dawley , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Masculino , Fosfatasa Alcalina/metabolismo , Cráneo
5.
ACS Appl Mater Interfaces ; 16(15): 18658-18670, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587811

RESUMEN

Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.


Asunto(s)
Osteogénesis , Andamios del Tejido , Ratones , Animales , Conejos , Andamios del Tejido/química , Biomimética , Regeneración Ósea , Poliésteres/química , Ingeniería de Tejidos , Impresión Tridimensional
6.
Adv Healthc Mater ; 13(18): e2303549, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38333940

RESUMEN

Periodontitis is a common oral disease accompanied by inflammatory bone loss. The pathological characteristics of periodontitis usually accompany an imbalance in the periodontal immune microenvironment, leading to difficulty in bone regeneration. Therefore, effective treatment strategies are needed to modulate the immune environment in order to treat periodontitis. Here, highly-oriented periodic lamellae poly(ε-caprolactone) electrospun nanofibers (PLN) are developed by surface-directed epitaxial crystallization. The in vitro result shows that the PLN can precisely modulate macrophage polarization toward the M2 phenotype. Macrophages polarized by PLN significantly enhance the migration and osteogenic differentiation of Bone marrow stromal cells. Notably, results suggest that the topographical cues presented by PLN can modulate macrophage polarization by activating YAP, which reciprocally inhibits the NF-κB signaling pathway. The in vivo results indicate that PLN can inhibit inflammatory bone loss and facilitate bone regeneration in periodontitis. The authors' findings suggest that topographical nanofibers with periodic lamellae is a promising strategy for modulating immune environment to treat inflammatory bone loss in periodontitis.


Asunto(s)
Nanofibras , Osteogénesis , Periodontitis , Poliésteres , Nanofibras/química , Periodontitis/terapia , Periodontitis/patología , Periodontitis/inmunología , Periodontitis/tratamiento farmacológico , Animales , Ratones , Poliésteres/química , Osteogénesis/efectos de los fármacos , Células RAW 264.7 , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , FN-kappa B/metabolismo , Células Madre Mesenquimatosas/inmunología , Inmunomodulación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/inmunología , Ratones Endogámicos C57BL , Masculino , Inflamación/patología , Proteínas Señalizadoras YAP
7.
J Biomed Mater Res B Appl Biomater ; 111(1): 26-37, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35809250

RESUMEN

Vitamin E (VE) is currently an approved antioxidant to improve the oxidation stability of highly crosslinked ultrahigh molecular weight polyethylene (UHMWPE) insert used commercially in total joint arthroplasty. However, the decrease in crosslink density caused by VE reduces wear resistance of UHMWPE, showing an uncoordinated challenge. In this work, we hypothesized that D-sorbitol (DS) as a secondary antioxidant can improve the antioxidant efficacy of VE on chemically crosslinked UHMWPE. The combined effect of VE and DS on oxidation stability of UHMWPE was investigated at a set of controlled hybrid antioxidant content. The hybrid antioxidant strategy showed significantly synergistic enhancement on the oxidation stability of chemically crosslinked UHMWPE compared with the single VE strategy. More strikingly, the crosslink density of the blends with hybrid antioxidants stayed at a high level since DS is not sensitive to crosslinking. The relationships between oxidation stability, mechanical properties, crosslink density, and crystallinity were investigated, by which the clinically relevant overall performance of UHMWPE was optimized. This work provides a leading-edge design mean for the development of joint bearings.


Asunto(s)
Antioxidantes , Polietilenos , Antioxidantes/química , Peso Molecular , Ensayo de Materiales , Polietilenos/química , Vitamina E/química
8.
ACS Appl Mater Interfaces ; 15(21): 25403-25416, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37202852

RESUMEN

Senile osteoporotic fracture has aroused increasing attention due to high morbidity and mortality. However, to date, there is no effective therapeutic approach available. Senile osteoporosis is characterized by impaired osteogenesis and angiogenesis, osteoporotic fracture repair could also be promoted by enhancing osteogenesis and angiogenesis. Tetrahedral framework nucleic acids (tFNAs) are a multifunctional nanomaterial that have recently been extensively used in biomedical fields, which could enhance osteogenesis and angiogenesis in vitro. Therefore, we applied tFNAs to intact and femoral fractural senile osteoporotic mice, respectively, to evaluate the effects of tFNAs on senile osteoporosis and osteoporotic fracture repair regarding the osteogenesis and angiogenesis of the callus at the early healing stages and to initially explore the potential mechanism. The outcomes showed that tFNAs had no significant effects on the osteogenesis and angiogenesis of the femur and mandible in intact senile osteoporotic mice within 3 weeks after tFNA treatment, while tFNAs could promote osteogenesis and angiogenesis of callus in osteoporotic fracture repair, which may be regulated by a FoxO1-related SIRT1 pathway. In conclusion, tFNAs could promote senile osteoporotic fracture repair by enhancing osteogenesis and angiogenesis, offering a new strategy for the treatment of senile osteoporotic fracture.


Asunto(s)
Ácidos Nucleicos , Osteoporosis , Fracturas Osteoporóticas , Ratones , Animales , Osteogénesis , Fracturas Osteoporóticas/terapia , Curación de Fractura , Ácidos Nucleicos/farmacología , Osteoporosis/tratamiento farmacológico
9.
ACS Biomater Sci Eng ; 9(7): 4431-4441, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37452570

RESUMEN

Periodontitis is a worldwide bacterial infectious disease, resulting in the resorption of tooth-supporting structures. Biodegradable polymeric microspheres are emerging as an appealing local therapy candidate for periodontal defect regeneration but suffer from tedious procedures and low yields. Herein, we developed a facile yet scalable approach to prepare polylactide composite microspheres with outstanding drug-loading capability. It was realized by blending equimolar polylactide enantiomers at the temperature between the melting point of homocrystallites and stereocomplex (sc) crystallites, enabling the precipitation of sc crystallites in the form of microspheres. Meanwhile, epigallocatechin gallate (EGCG) and nano-hydroxyapatite were encapsulated in the microspheres in the designated amount. Such an assembly allowed the fast and sustained release of EGCG and Ca2+ ions. The resultant hybrid composite microspheres not only exhibited strong antimicrobial activity against typical oral pathogens (Porphyromonas gingivalis and Enterococcus faecalis), but also directly promoted osteogenic differentiation of periodontal ligament stem cells with good cytocompatibility. These dual-functional composite microspheres offer a desired drug delivery platform to address the practical needs for periodontitis treatment.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Microesferas , Células Madre , Diferenciación Celular
10.
Biomacromolecules ; 13(11): 3858-67, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23072455

RESUMEN

The effect of shear flow and carbon nanotubes (CNTs), separately and together, on nonisothermal crystallization of poly(lactic acid) (PLA) at a relatively large cooling rate was investigated by time-resolved synchrotron wide-angle X-ray diffraction (WAXD) and polarized optical microscope (POM). Unlike flexible-chain polymers such as polyethylene, and so on, whose crystallization kinetics are significantly accelerated by shear flow, neat PLA only exhibits an increase in onset crystallization temperature after experiencing a shear rate of 30 s(-1), whereas both the nucleation density and ultimate crystallinity are not changed too much because PLA chains are intrinsically semirigid and have relatively short length. The breaking down of shear-induced nuclei into point-like precursors (or random coil) probably becomes increasingly active after shear stops. Very interestingly, a marked synergistic effect of shear flow and CNTs exists in enhancing crystallization of PLA, leading to a remarkable increase of nucleation density in PLA/CNT nanocomposite. This synergistic effect is ascribed to extra nuclei, which are formed by the anchoring effect of CNTs' surfaces on the shear-induced nuclei and suppressing effect of CNTs on the relaxation of the shear-induced nuclei. Further, this interesting finding was deliberately applied to injection molding, aiming to improve the crystallinity of PLA products. As expected, a remarkable high crystallinity in the injection-molded PLA part has been achieved successfully by the combination of shear flow and CNTs, which offers a new method to fabricate PLA products with high crystallinity for specific applications.


Asunto(s)
Ácido Láctico/química , Nanocompuestos/química , Nanotubos de Carbono/química , Polímeros/química , Frío , Cristalización , Microscopía de Polarización , Poliésteres , Difracción de Rayos X
11.
J Funct Biomater ; 13(4)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36547540

RESUMEN

Multiple-pathogen periodontal disease necessitates a local release and concentration of antibacterial medication to control inflammation in a particular location of the mouth cavity. Therefore, it is necessary to effectively load and deliver medicine/antibiotics to treat numerous complex bacterial infections. This study developed chlorhexidine (CHX)/polycaprolactone (PCL) nanofiber membranes with controlled release properties as periodontal dressings to prevent or treat oral disorders. Electrostatic spinning was adopted to endow the nanofiber membranes with a high porosity, hydrophilicity, and CHX loading capability. The release of CHX occurred in a concentration-dependent manner. The CHX/PCL nanofiber membranes exhibited good biocompatibility with human periodontal ligament stem cells, with cell viability over 85% in each group via CCK-8 assay and LIVE/DEAD staining; moreover, the good attachment of the membrane was illustrated by scanning electron microscopy imaging. Through the agar diffusion assay, the nanofiber membranes with only 0.075 wt% CHX exhibited high antibacterial activity against three typical oral infection-causing bacteria: Porphyromonas gingivalis, Enterococcus faecalis, and Prevotella intermedia. The results indicated that the CHX/PCL nanofiber holds great potential as a periodontal dressing for the prevention and treatment periodontal disorders associated with bacteria.

12.
ACS Biomater Sci Eng ; 7(1): 373-381, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33351587

RESUMEN

Highly crosslinked ultrahigh-molecular-weight polyethylene (UHMWPE) bearings are wear-resistant to reduce aseptic loosening but are susceptible to oxidize in vivo/in vitro, as reported in clinical studies. Despite widespread acceptance of antioxidants in preventing oxidation, the crosslinking efficiency of UHMWPE is severely impacted by antioxidants, the use of which was trapped in a trace amount. Herein, we proposed a new strategy of polyphenol-assisted chemical crosslinking to facilitate the formation of a crosslinking network in high-loaded tea polyphenol/UHMWPE blends. Epigallocatechin gallate (EGCG), a representative of tea polyphenol, was mixed with UHMWPE and peroxide. Multiple reactive phenolic hydroxyl groups of tea polyphenol coupled with the nearby free radicals to form extra crosslinking sites. The crosslinking efficiency was remarkably enhanced with increasing tea polyphenol content, even at a concentration of 8 wt %. Given by the hydrogen donation principle, the high-loaded tea polyphenol also enhanced the oxidation stability of the crosslinked UHMWPE. The antioxidative performance was preserved even after tea polyphenol elution. Moreover, superior antibacterial performance was achieved by the in situ tea polyphenol release from the interconnected pathways in the present design. The strategy of polyphenol-assisted chemical crosslinking is applicable for producing highly crosslinked, antioxidative, and antibacterial UHMWPE, which has promising prospects in clinical applications.


Asunto(s)
Antioxidantes , Artroplastia de Reemplazo , Antibacterianos , Polietilenos , Polifenoles , Vitamina E
13.
Acta Biomater ; 134: 302-312, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34311104

RESUMEN

Oxidative stability of radiation crosslinked ultrahigh molecular weight polyethylene (UHMWPE) artificial joints is significantly improved by vitamin E (VE), but there is a dilemma that VE hinders crosslinking and thus jeopardizes the wear of UHMWPE. In this effort, we proposed an efficient strategy to stabilize UHMWPE under limited antioxidant contents, where VE and D-sorbitol (DS) were used as the primary antioxidant and the secondary antioxidant respectively. For non-irradiated blends with fixed antioxidant contents, oxidative stability accessed by oxidation induction time (OIT) of VE/DS/UHMWPE blends was superior to that of VE/UHMWPE blends, while DS/UHMWPE blends showed no increase in OIT. The cooperation between DS and VE exhibited a synergistic effect on enhancing the oxidative stability of UHMWPE. Interestingly, the irradiated VE/DS/UHMWPE blends showed comparable OIT but a significantly higher crosslink density than the irradiated VE/UHMWPE blends. The crystallinity, melting point, and in vitro biocompatibility of the blends were not affected by VE and DS. The quantitative relationships of mechanical properties, oxidation stability, crystallinity and crosslink density were established to unveil the correlation of these key factors. The overall properties of VE/UHMWPE and VE/DS/UHMWPE blends were compared to elucidate the superiority of the antioxidant compounding strategy. These findings provide a paradigm to break the trade-off between oxidative stability, crosslink density and mechanical properties, which is constructive to develop UHMWPE bearings with upgraded performance for total joint replacements. STATEMENT OF SIGNIFICANCE: VE-stabilized UHMWPE is the most commonly used material in total joint replacements at present. However, oxidation and wear resistance of VE/UHMWPE implants cannot be unified since VE reduces the efficiency of radiation crosslinking. It limits the use of VE. Herein, we proposed a compounding stabilization by the synergy between VE and DS. The antioxidation capability of VE was revived by DS, thus enhancing the oxidation stability of unirradiated UHMWPE. The irradiated VE/DS/UHMWPE exhibited similar oxidation stability but higher crosslink density than irradiated VE/UHMWPE, which is beneficial to combat wear of UHMWPE and to inhibit the occurrence of osteolysis. This synergistic antioxidation strategy endows the UHMWPE joint material with good overall performance, which is of clinical significance.


Asunto(s)
Polietilenos , Vitamina E , Ensayo de Materiales , Peso Molecular , Sorbitol , Vitamina E/farmacología
14.
Mater Sci Eng C Mater Biol Appl ; 124: 112040, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33947540

RESUMEN

To avoid catastrophic bacterial infection in prosthesis failure, ultrahigh molecular weight polyethylene (UHMWPE), a common bearing material of artificial joints, has been formulated with antibiotics to eliminate bacteria locally at the implant site. However, the pressing issues regarding cytotoxic effects and evolution of drug resistant bacteria necessitates the development of bio-friendly bacteriostat with long bacteriostatic efficacy. Herein, tea polyphenol extracted from nature source was introduced in UHMWPE as a biogenic antimicrobial. Controlled antimicrobial activity was achieved by chemical crosslinking to regulate the release of the tea polyphenol. In addition, the crosslinking efficiency of UHMWPE blends with high loaded tea polyphenol was significantly improved in comparison to radiation crosslinking. The immobilized tea polyphenols also enhanced the oxidation stability of the UHMWPE, which is essential to prolong the service life in vivo and the storage time in vitro. The blends presented good biocompatibility, despite cell repellent on the highly crosslinked surface. Chemically crosslinked tea polyphenol/UHMWPE exhibited feasible properties for total joint implants, which is promising for clinical application.


Asunto(s)
Artroplastia de Reemplazo , Polifenoles , Ensayo de Materiales , Peso Molecular , Polietilenos , Polifenoles/farmacología , , Tiram
15.
Mater Sci Eng C Mater Biol Appl ; 118: 111457, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33255042

RESUMEN

Topographical structures and bioactive surface coatings are effective in improving the biological function for bone regeneration. However, the simultaneous introduction of these benefits into three-dimensional (3D) porous scaffolds poses a daunting challenge. In this study, we proposed a simple yet effective approach to decorate 3D-printed polylactic acid (PLA) scaffolds with chemically modified nanotopographical patterns. The nanotopography was produced by etching the amorphous phase of PLA in an alcohol/alkali solution to expose dense lamellae. Subsequently, conformal decoration of polydopamine (PDA) was realized via self-assembly of catecholamines without changing the surface nanotopography. In vitro cell experiments including live and dead staining, cell morphology, cell growth, and alkaline phosphatase showed that the combination of nanotopography and PDA-coating led to a favorable enhancement of osteoblasts adhesion, spread and proliferation in 3D-printed scaffolds. The contribution of integrated patterns to bone regeneration was evaluated using a rat femur critical-sized defect model in vivo. Micro-CT evaluation and histological analysis demonstrated that the scaffold decorated with integrated pattens promoted osteogenesis more than the bare scaffolds and the scaffolds decorated with only nanotopography. Our proposed approach offers a promising method for improving bioactivity of 3D polymer scaffolds for bone tissue regeneration.


Asunto(s)
Señales (Psicología) , Andamios del Tejido , Animales , Regeneración Ósea , Osteogénesis , Poliésteres , Impresión Tridimensional , Ratas
16.
Biomaterials ; 262: 120336, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32920428

RESUMEN

Hydration lubrication is the key responsible for the exceptionally low boundary friction between biosurfaces. However, it is a challenge to settle a hydration layer on a polymer surface via a noncovalent manner. Herein, we develop a highly lubricated coating absorbed onto the polymer surface via intermolecular association of hyaluronic acid (HA)-based micelles. A poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer (Pluronic, F127) is recruited to complex with HA and further self-assembled to form a thick micelle layer. High water-retaining capacity of the HA/F127 coating enables the decorated surface with excellent hydrophilicity and boundary lubrication, where the coefficient of friction in aqueous media is reduced by 60% compared with the bare polymer surface. The HA/F127 coating suppresses nonspecific protein adsorption and exhibits good biocompatibility. More remarkably, an in vivo cynomolgus monkey model, demonstrates the utility of the HA/F127 coating in alleviating or preventing complications of endotracheal intubation, such as foreign irritation, airway mucosal damage, and inflammatory response. This cost-effective and scalable approach is suitable to manufacture interventional devices especially disposable medical devices with highly lubricated surface.


Asunto(s)
Ácido Hialurónico , Polímeros , Animales , Intubación Intratraqueal , Lubrificación , Macaca fascicularis , Agua
17.
J Mater Chem B ; 8(45): 10428-10438, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33112351

RESUMEN

Periprosthetic joint infection (PJI) is one of the main causes for the failure of joint arthroplasty. In view of the limited clinical effect of oral/injectable antibiotics and the drug resistance problem, there is a pressing need to develop antibacterial implants with therapeutic antimicrobial properties. In this work, we prepared a highly antibacterial ultrahigh molecular weight polyethylene (UHMWPE) implant by incorporating tea polyphenols. The presence of tea polyphenols not only improved the oxidation stability of irradiated UHMWPE, but also gave it the desirable antibacterial property. The potent antibacterial activity was attributed to the tea polyphenols that produced excess intracellular reactive oxygen species and destroyed the bacterial membrane structure. The tea polyphenol-blended UHMWPE had no biological toxicity to human adipose-derived stem cells and effectively reduced bacteria-induced inflammation in vivo. These results indicate that tea polyphenol-blended UHMWPE is promising for joint replacement prostheses with multifunctionality to meet patient satisfaction.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Materiales Biocompatibles/farmacología , Prótesis Articulares , Polietilenos/farmacología , Polifenoles/farmacología , Animales , Antibacterianos/uso terapéutico , Antiinflamatorios/uso terapéutico , Artroplastia de Reemplazo/efectos adversos , Bacterias/efectos de los fármacos , Infecciones Bacterianas/etiología , Infecciones Bacterianas/prevención & control , Materiales Biocompatibles/uso terapéutico , Línea Celular , Humanos , Prótesis Articulares/efectos adversos , Prótesis Articulares/microbiología , Masculino , Polietilenos/uso terapéutico , Polifenoles/uso terapéutico , Ratas Sprague-Dawley , Té/química
18.
J Biomed Mater Res B Appl Biomater ; 107(3): 716-723, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30080312

RESUMEN

Radiation crosslinking decreases the wear of ultrahigh molecular weight polyethylene (UHMWPE) used in total joint implants and creates residual free radicals, which are the precursors of oxidative degradation. It is desirable to obtain a simultaneously wear- and oxidation-resistant UHMWPE in order to prolong the longevity of implants. In this study, we hypothesized that the oxidative stability of a vitamin E-containing, wear resistant UHMWPE can be improved by limiting the exposure of the antioxidant to radiation to maximize its activity. We blended UHMWPE powder with 0.1 wt % vitamin-E and irradiated these powder blends (XPE). We further blended and consolidated uncrosslinked 0.1 wt % vitamin E-blended UHMWPE with XPE and assessed the effects of radiation dose used for XPE and XPE content in the formulation on pin-on-disk wear resistance, static mechanical properties, and squalene-initiated accelerated thermal aging. The wear rate decreased significantly with increasing XPE content in UHMWPE/XPE and increasing radiation dose used in the XPE preparation. The UHMWPE/XPE blends displayed improved oxidation resistance in the presence of the pro-oxidant squalene compared to vitamin E-blended UHMWPE irradiated to 125 kGy after consolidation. Strength and toughness of the UHMWPE/XPE blends decreased with increasing radiation dose and increasing XPE content; and these were comparable to those measured with the consolidated and irradiated vitamin E-blended UHMWPE. Blending UHMWPE with XPE is a feasible approach to create a wear resistant UHMWPE with more active vitamin E available for long-term oxidative protection of the polymer as the radiation exposure of the vitamin-E in the vitamin E-blended UHMWPE matrix is minimized. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 716-723, 2019.


Asunto(s)
Prótesis Articulares , Ensayo de Materiales , Polietilenos/química , Oxidación-Reducción
19.
ACS Appl Mater Interfaces ; 11(46): 42956-42963, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31661240

RESUMEN

Surface nanotopography provides a physical stimulus to direct cell fate, especially in the case of osteogenic differentiation. However, fabrication of nanopatterns usually suffers from complex procedures. Herein, a feasible and versatile method was presented to create unique nanosheets on a poly(ε-caprolactone) (PCL) substrate via surface epitaxial crystallization. The thickness, periodic distance, and root-mean-square nanoroughness of surface nanosheets were tunable by simply altering the PCL concentration in the growth solution. Epitaxial nanosheets possessed an identical composition as the substrate, being a prerequisite to revealing the independent effect of biophysical linkage on the osteogenic mechanism of the patterned surface. Preosteoblasts' response to the epitaxial nanosheets was examined in the aspect of preosteoblast proliferation and osteogenic differentiation. The expression of alkaline phosphatase, collagen type I, osteopontin, and osteocalcin as well as mineralization was significantly promoted by the epitaxial nanosheets. Acceleration of osteogenic differentiation was attributed to activating the TAZ/RUNX2 signaling pathway. The findings demonstrate that surface epitaxial crystallization is a feasible approach to design and construct nanotopography for bone tissue engineering.


Asunto(s)
Diferenciación Celular , Nanoestructuras/química , Osteoblastos/metabolismo , Osteogénesis , Poliésteres/química , Animales , Antígenos de Diferenciación/biosíntesis , Línea Celular , Ratones , Osteoblastos/citología , Propiedades de Superficie
20.
Artículo en Inglés | MEDLINE | ID: mdl-30606514

RESUMEN

Mimicking the structural features of natural bone has been demonstrated to bring pronounced advantages for mechanical reinforcement of polymeric orthopedic substitutes that are composed of bioinert polymer matrix and bioactive fillers. However, to trigger effective bone formation and implant integration, the bioactivity of bone substitutes plays a vital role. We hypothesized that the use of hydroxyapatite (HA) and bioactive glass (BG), compared to the use of HA alone, could improve the biological properties of polymer-based bone substitutes. Herein, high-density polyethylene (PE) composites loaded with HA and BG were fabricated using a modified injection molding machine that can provide intense shear flow to regulate the hierarchical structure of the composites. Morphological observation revealed that bone-like structures were formed in both HA/PE and BG/HA/PE composites, showing highly oriented interlocked shish kebabs. In addition, the bioactive fillers were distributed uniformly. Osteoblast proliferation was promoted by the combination of HA and BG. The mechanism was the upregulation of Runx2 expression (1.51 ±â€¯0.17) with BG and the activation of the TAZ/YAP (1.41/0.64) signaling pathway, which accelerated the generation of ossification-related proteins. BG can regulate microRNA to promote the mRNA expression of Runx2. The silencing of Runx2 expression can inhibit BG-induced osteoblast proliferation. These results suggest that the BG/HA/PE composites having a bone-like structure have high potential as bone substitutes to repair large bone defects.


Asunto(s)
Sustitutos de Huesos , Proliferación Celular/efectos de los fármacos , Cerámica , Durapatita , Regulación de la Expresión Génica/efectos de los fármacos , Osteoblastos/metabolismo , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Animales , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Proteínas de Ciclo Celular , Línea Celular , Cerámica/química , Cerámica/farmacología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Durapatita/química , Durapatita/farmacología , Ratones , Osteoblastos/citología , Fosfoproteínas/biosíntesis , Polietileno/química , Polietileno/farmacología , Factores de Transcripción/biosíntesis , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA