Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Sci Technol ; 48(4): 2321-7, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24428761

RESUMEN

The production of polyvinyl chloride (PVC) via the calcium carbide process utilizes a catalyst containing large amounts of mercury (Hg) and is therefore one of the most important sources of anthropogenic Hg in China. To measure the emission of Hg from PVC production, we established a flowchart for the calcium carbide process, for which we quantified the Hg content of the material/product at each step. Results indicated that 71.5% of the total Hg (Hg(T)) was lost from the catalyst, most of which was recovered by the Hg remover, accounting for 46.0% of the total Hg (Hg(T)). We determined that 3.7% of the Hg(T) was released into the environment, mostly in solid wastes and byproducts such as hydrochloric acid. Furthermore, no Hg has been detected in the PVC end product. However, we were only able to account for 78.1% of the Hg across the whole system, leaving 21.7% unaccounted for in the mass balance. A rough estimation indicates that most of the "missing" Hg had accumulated in deposits on the inner surface of converters and downstream pipelines; however, the emission to the atmosphere was ≤ 1% of the Hg(T). For a PVC production line equipped with a Hg remover, emissions of Hg to the atmosphere have been estimated to be 4.9 g per tonne PVC. Currently, almost all calcium carbide facilities have been equipped with a Hg remover, which may reduce the release of Hg in China by ∼ 500 t/year.


Asunto(s)
Contaminantes Atmosféricos/análisis , Mercurio/análisis , Cloruro de Polivinilo/síntesis química , China , Residuos Industriales/análisis
2.
Bioelectrochemistry ; 159: 108731, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38759479

RESUMEN

Carbon steel microbiologically influenced corrosion (MIC) by sulfate reducing bacteria (SRB) is known to occur via extracellular electron transfer (EET). A higher biofilm sessile cell count leads to more electrons being harvested for sulfate reduction by SRB in energy production. Metal surface roughness can impact the severity of MIC by SRB because of varied biofilm attachment. C1018 carbon steel coupons (1.2 cm2 top working surface) polished to 36 grit (4.06 µm roughness which is relatively rough) and 600 grit (0.13 µm) were incubated in enriched artificial seawater inoculated with highly corrosive Desulfovibrio ferrophilus IS5 at 28 â„ƒ for 7 d and 30 d. It was found that after 7 d of SRB incubation, 36 grit coupons had a 11% higher sessile cell count at (2.0 ± 0.17) × 108 cells/cm2, 52% higher weight loss at 22.4 ± 5.9 mg/cm2 (1.48 ± 0.39 mm/a uniform corrosion rate), and 18% higher maximum pit depth at 53 µm compared with 600 grit coupons. However, after 30 d, the differences diminished. Electrochemical tests with transient information supported the weight loss data trends. This work suggests that a rougher surface facilitates initial biofilm establishment but provides no long-term advantage for increased biofilm growth.


Asunto(s)
Biopelículas , Carbono , Desulfovibrio , Acero , Propiedades de Superficie , Corrosión , Acero/química , Desulfovibrio/metabolismo , Desulfovibrio/fisiología , Carbono/química , Carbono/metabolismo , Electrones , Transporte de Electrón , Sulfatos/metabolismo , Sulfatos/química
3.
Sci Total Environ ; 925: 171763, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494030

RESUMEN

Microbial biofilms are behind microbiologically influenced corrosion (MIC). Sessile cells in biofilms are many times more concentrated volumetrically than planktonic cells in the bulk fluids, thus providing locally high concentrations of chemicals. More importantly, "electroactive" sessile cells in biofilms are capable of utilizing extracellularly supplied electrons (e.g., from elemental Fe) for intracellular reduction of an oxidant such as sulfate in energy metabolism. MIC directly caused by anaerobic biofilms is classified into two main types based on their mechanisms: extracellular electron transfer MIC (EET-MIC) and metabolite MIC (M-MIC). Sulfate-reducing bacteria (SRB) are notorious for their corrosivity. They can cause EET-MIC in carbon steel, but they can also secrete biogenic H2S to corrode other metals such as Cu directly via M-MIC. This study investigated the use of conductive magnetic nanowires as electron mediators to accelerate and thus identify EET-MIC of C1020 by Desulfovibrio vulgaris. The presence of 40 ppm (w/w) nanowires in ATCC 1249 culture medium at 37 °C resulted in 45 % higher weight loss and 57 % deeper corrosion pits after 7-day incubation. Electrochemical tests using linear polarization resistance and potentiodynamic polarization supported the weight loss data trend. These findings suggest that conductive magnetic nanowires can be employed to identify EET-MIC. The use of insoluble 2 µm long nanowires proved that the extracellular section of the electron transfer process is a bottleneck in SRB MIC of carbon steel.


Asunto(s)
Desulfovibrio vulgaris , Desulfovibrio , Nanocables , Humanos , Acero , Electrones , Carbono/metabolismo , Biopelículas , Desulfovibrio/metabolismo , Corrosión , Sulfatos/metabolismo , Pérdida de Peso
4.
Bioelectrochemistry ; 154: 108508, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37451042

RESUMEN

Pseudomonas aeruginosa is a facultative bacterium that is pathogenic. It is ubiquitous in the environment including air handling systems. It causes microbiologically influenced corrosion (MIC) aerobically and anaerobically. In this work, P. aeruginosa was grown as a nitrate reducing bacterium (NRB) in Luria-Bertani medium with KNO3 at 37 °C. Trehalase, an enzyme which plays a crucial role in biofilm formation was found to enhance the treatment of P. aeruginosa biofilm and its MIC against galvanized steel by tetrakis-hydroxymethyl phosphonium sulfate (THPS) green biocide. After a 7-d incubation, 30 ppm (w/w) trehalase reduced sessile cell count by 0.8-log, and it also reduced galvanized steel weight loss by 14%, compared to 2.3-log and 39%, respectively for the 30 ppm THPS treatment. The combination of 30 ppm THPS + 30 ppm trehalase reduced sessile cell count further by 0.1-log and weight loss by 13% compared to using THPS alone. Electrochemical corrosion measurements supported weight loss results. The injection of 20 ppm riboflavin into a 3-d P. aeruginosa broth failed to accelerate the corrosion rate, suggesting that nitrate reducing P. aeruginosa MIC of galvanized steel did not belong to extracellular electron transfer-MIC, because Zn was hydrolyzed after the microbe damaged the passive film.


Asunto(s)
Desinfectantes , Acero , Pseudomonas aeruginosa , Trehalasa , Nitratos , Biopelículas , Corrosión
5.
Bioelectrochemistry ; 149: 108307, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36274516

RESUMEN

Desulfovibrio vulgaris biofilm was pre-grown on Ti coupons for 7 d and then the biofilm covered coupons were incubated again with fresh culture media with 10 % (reduced) and 100 % (normal) carbon source levels, respectively. After the pre-growth, sessile D. vulgaris cell count reached 107 cells/cm2. The sessile cell counts were 2 × 107 and 4.2 × 107 cells/cm2 for 10 % and 100 % carbon sources, respectively after the subsequent 7 d starvation test. The maximum pit depth after the 7 d pre-growth was 4.7 µm. After the additional 7 d of the starvation test, the maximum pit depth increased to 5.1 µm for 100 % carbon source vs 6.2 µm for 10 % carbon source. Corrosion current density (icorr) from potentiodynamic polarization data at the end of the 7 d starvation test for 10 % carbon source was more than 3 times of that for 100 % carbon source, despite a reduced sessile cell count with 10 % carbon source. The polarization resistance (Rp) started to decrease within minutes after 20 ppm (w/w) riboflavin (electron mediator) injection. The carbon starvation data and riboflavin corrosion acceleration data both suggested that D. vulgaris utilized elemental Ti as an electron source to replace carbon source as the electron donor during carbon source starvation.


Asunto(s)
Desulfovibrio vulgaris , Desulfovibrio , Corrosión , Titanio , Carbono , Biopelículas , Riboflavina , Acero
6.
Plant Sci ; 301: 110638, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33218618

RESUMEN

Allocation of more resources to growth but less to defense causing growth vigor of invasive alien plant populations contributes to successful invasion. However, few studies has addressed to relationship between vascular development variation and this mechanism. In this study, a common garden experimentwas established to compare the growth and vascular bundle development between native and introduced populations of Solidago canadensis, which is a wide-distributed invasive species in China. Our results suggested that the rapid growth of introduced populations could be explained by the well-developed and highly lignified xylem; while native populations present more developed and highly lignified phloem, which contributed more resistance to the infection of Sclerotiun rofsii compared with introduced populations. This difference was resulted from tissue-specific tradeoff distribution of lignification related gene expression between xylem and phloem, which is regulated by upstream MYB transcription factors. Our study gives a novel insight of mechanism that explain invasion success: lignin-related gene transcription-mediated tissue-specific lignification of vascular bundle contributes tradeoffs in resource allocation between growth and defence capacity during successful invasion of S. canadensis.


Asunto(s)
Lignina/metabolismo , Solidago/crecimiento & desarrollo , China , Especies Introducidas , Especificidad de Órganos , Floema/crecimiento & desarrollo , Floema/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/fisiología , Solidago/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xilema/crecimiento & desarrollo , Xilema/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA