RESUMEN
In this paper, we reported a new kind of cooling and light-enhanced hydrophilic nanocomposite film (PE/JW-0.8%) with low-density polyethylene (LDPE) as the substrate. The wetting, photophysical, and mechanical properties of PE/JW-0.8% were tested. The emission band of the fluorescence centers at 420 nm, which is perfectly consistent with the absorption spectrum of plant photosynthesis. In addition, light can be scattered by PE/JW-0.8% to achieve a larger light distribution area. PE/JW-0.8% showed a good durability of hydrophilicity in the water rinsing test. Meanwhile, the elongation at the break of the film was significantly increased. Benefiting from the fence structure induced labyrinth effect, a maximum reduction of 6.7 °C in temperature monitoring for PE/JW-0.8% was observed in the detailed field experiments. Light intensity monitoring showed that light intensity in PE/JW-0.8% increased by a maximum of 57.1% compared to PE/LH. In the biological quality analysis of melon, it was found that the soluble sugar, soluble solid, and vitamin C content of melon increased by 13.34, 22.96, and 50.95%, respectively. In conclusion, these results confirm that PE/JW-0.8% has great application potential in the field of facility agriculture, buildings, and photovoltaic modules.
Asunto(s)
Nanocompuestos , Fenómenos Químicos , Interacciones Hidrofóbicas e Hidrofílicas , Polietileno/química , Agua/químicaRESUMEN
Charcot-Marie-Tooth (CMT) disease represents a clinically and genetically heterogeneous group of inherited neuropathies. Here, we report a five-generation family of eight affected individuals with CMT disease type 2, CMT2. Genome-wide linkage analysis showed that the disease phenotype is closely linked to chromosomal region 10p13-14, which spans 5.41 Mb between D10S585 and D10S1477. DNA-sequencing analysis revealed a nonsense mutation, c.1455T>G (p.Tyr485(∗)), in exon 8 of dehydrogenase E1 and transketolase domain-containing 1 (DHTKD1) in all eight affected individuals, but not in other unaffected individuals in this family or in 250 unrelated normal persons. DHTKD1 mRNA expression levels in peripheral blood of affected persons were observed to be half of those in unaffected individuals. In vitro studies have shown that, compared to wild-type mRNA and DHTKD1, mutant mRNA and truncated DHTKD1 are significantly decreased by rapid mRNA decay in transfected cells. Inhibition of nonsense-mediated mRNA decay by UPF1 silencing effectively rescued the decreased levels of mutant mRNA and protein. More importantly, DHTKD1 silencing was found to lead to impaired energy production, evidenced by decreased ATP, total NAD(+) and NADH, and NADH levels. In conclusion, our data demonstrate that the heterozygous nonsense mutation in DHTKD1 is one of CMT2-causative genetic alterations, implicating an important role for DHTKD1 in mitochondrial energy production and neurological development.
Asunto(s)
Pueblo Asiatico/genética , Enfermedad de Charcot-Marie-Tooth/genética , Codón sin Sentido , Cetona Oxidorreductasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/metabolismo , China , Exones , Femenino , Orden Génico , Humanos , Complejo Cetoglutarato Deshidrogenasa , Masculino , Mitocondrias Musculares/genética , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Degradación de ARNm Mediada por Codón sin Sentido , LinajeRESUMEN
The Amur sleeper Perccottus glenii (Perciformes, Gobioidei, Odontobutidae) is well known as an invasive fish in the river basins of Eastern and Central Europe, but its genetic background is unavailable across its native habitats in northeast Asia. In this study, we used the mitochondrial cytochrome b gene by sampling 19 populations of P. glenii across its native distributional areas of Liaohe and Amur River basins to explore its evolutionary history. Phylogenetic analyses identified three major clades within P. glenii, among which Clade A and Clade B were co-distributed in the Liaohe and Amur River basins, and Clade C was restricted to the latter. Molecular dating showed that the splits of Clades A, B and C have happened in the late Early-early Middle Pleistocene and the most recent common ancestors of these clades have been presented in the late Middle-early Late Pleistocene. The P. glenii showed very high levels of genetic structure among populations (ΦST = 0.801), probably due to the characters of its life histories with very limited dispersal ability. The admixture of different clades in some populations of P. glenii probably reflects historical secondary contact. These findings indicate that Pleistocene climatic oscillation and river capture were major determinants for genetic variations and evolutionary history of the P. glenii.
Asunto(s)
Frío , Peces/genética , Peces/fisiología , Ríos , Distribución Animal , Animales , Asia/epidemiología , Peces/clasificación , Variación Genética , Filogenia , FilogeografíaRESUMEN
This study aims to investigate the preparation process and in vitro release behavior of artesunate polylactic acid microspheres, in order to prepare an artesunate polylactic acid (PLA) administration method suitable for hepatic arterial embolization. With PLA as the material and polyvinyl alcohol (PVA) as the emulsifier, O/W emulsion/solvent evaporation method was adopted to prepare artesunate polylactic acid microspheres, and optimize the preparation process. With drug loading capacity, encapsulation efficiency and particle size as indexes, a single factor analysis was made on PLA concentration, PVA concentration, drug loading ratio and stirring velocity. Through an orthogonal experiment, the optimal processing conditions were determined as follows: PLA concentration was 9. 0% , PVA concentration was 0. 9% , drug loading ratio was 1:2 and stirring velocity was 1 000 r x min(-1). According to the verification of the optimal process, microsphere size, drug loading and entrapment rate of artesunate polylactic acid microspheres were (101.7 +/- 0.37) microm, (30.8 +/- 0.84)%, (53.6 +/- 0.62)%, respectively. The results showed that the optimal process was so reasonable and stable that it could lay foundation for further studies.
Asunto(s)
Artemisininas/química , Composición de Medicamentos/métodos , Ácido Láctico/química , Microesferas , Polímeros/química , Artesunato , Calibración , Poliésteres , Alcohol Polivinílico/químicaRESUMEN
Single-atomic nanozymes (SANZs) characterized by atomically dispersed single metal atoms have recently contributed to breakthroughs in biomedicine due to their satisfactory catalytic activity and superior selectivity compared to their nanoscale counterparts. The catalytic performance of SANZs can be improved by modulating their coordination structure. Therefore, adjusting the coordination number of the metal atoms in the active center is a potential method for enhancing the catalytic therapy effect. In this study, we synthesized various atomically dispersed Co nanozymes with different nitrogen coordination numbers for peroxidase (POD)-mimicking single-atomic catalytic antibacterial therapy. Among the polyvinylpyrrolidone modified single-atomic Co nanozymes with nitrogen coordination numbers of 3 (PSACNZs-N3-C) and 4 (PSACNZs-N4-C), single-atomic Co nanozymes with a coordination number of 2 (PSACNZs-N2-C) had the highest POD-like catalytic activity. Kinetic assays and Density functional theory (DFT) calculations indicated that reducing the coordination number can lower the reaction energy barrier of single-atomic Co nanozymes (PSACNZs-Nx-C), thereby increasing their catalytic performance. In vitro and in vivo antibacterial assays demonstrated that PSACNZs-N2-C had the best antibacterial effect. This study provides proof of concept for enhancing single-atomic catalytic therapy by regulating the coordination number for various biomedical applications, such as tumor therapy and wound disinfection. STATEMENT OF SIGNIFICANCE: The use of nanozymes that contain single-atomic catalytic sites has been shown to effectively promote the healing of bacteria-infected wounds by exhibiting peroxidase-like activity. The homogeneous coordination environment of the catalytic site has been associated with high antimicrobial activity, which provides insight into designing new active structures and understanding their mechanisms of action. In this study, we designed a series of cobalt single-atomic nanozymes (PSACNZs-Nx-C) with different coordination environments by shearing the Co-N bond and modifying polyvinylpyrrolidone (PVP). The synthesized PSACNZs-Nx-C demonstrated enhanced antibacterial activity against both Gram-positive and Gram-negative bacterial strains, and showed good biocompatibility in both in vivo and in vitro experiments.
Asunto(s)
Cobalto , Povidona , Cobalto/farmacología , Peroxidasas/química , Peroxidasa , Bacterias Gramnegativas , Antibacterianos/farmacología , Antibacterianos/química , Nitrógeno/químicaRESUMEN
VVOCs with a retention range below C6 have become one of the main indoor pollutants that negatively affect human health. Most studies have focused on the emission of VOCs from furniture and decorative materials, seldom consider VVOCs. To close this gap, a 15-L environmental chamber, combined with multi-absorbent tube, was used for gas sampling. Emissions of VVOCs and odors released from decorative medium density fiberboard (MDF) were measured using gas chromatography-mass spectrometry and olfactometry detection. The results demonstrated that multi-absorbent tubes had excellent capture capacity for low-molecular-weight VVOCs. Thickness and decorative materials had conspicuous effects on VVOCs and odor emissions. The total VVOCs (TVVOC) from 18-mm decorative MDF was consistently higher than that of 8-mm samples. The major VVOCs from these decorative MDF were alcohols, esters and ketones, which were the major odor contributors with high odor intensity values. VVOCs concentration generally increased as thickness increased, but it decreased after decorative treatment. Fruity and alcohol-like were the main odor impressions of 8-mm MDF, whereas sweet and fruity were the major odor impressions of 8-mm polyvinyl chloride decorative MDF (PVC-MDF) and melamine impregnated paper decorative MDF (MI-MDF). Fruity was the main odor impression of 18-mm decorative MDF. The overall odor intensity increased and the major odor impression may differ when thickness was changed. Both the MI and the PVC decorative materials blocked some odor emissions but did so to a greater extent with the former than with the latter. Identification and analysis of the composition of VVOCs can supplement a database structure network of volatile pollutants and establish a novel and feasible method to investigate low-molecular-weight substances from wooden materials and their products.
Asunto(s)
Contaminantes Ambientales , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Cloruro de Polivinilo/análisis , Contaminantes Ambientales/análisis , Alcoholes/análisis , Ésteres/análisis , Cetonas/análisisRESUMEN
A salt-responsive nanoplatform is constructed through a simple tactic by tethering zwitterionic nanohydrogels (NGs) on a carboxylated silica (SiO2-COOH) framework. Chondroitin sulfate (CS), with a specific recognition effect for low-density lipoprotein (LDL), is modified to NGs by amidation reaction. Water retention and swelling properties of NGs are greatly enhanced in a saline environment attributed to the anti-polyelectrolyte effect. It endows the SiO2-NGs-CS framework a sensitive salt-responsive property, and thus, more CS moieties are exposed. The controlled adsorption of LDL with an adsorption efficiency of 7.2 to 93% is achieved by adjusting the concentration of MgCl2 from 0 to 0.1 mol L-1. SiO2-NGs-CS exhibits excellent adsorption capacity for fishing LDL, acquiring the highest adsorption capacity of 898.1 mg g-1. Moreover, SiO2-NGs-CS shows superior selectivity to the other three proteins with similar isoelectric points (pIs) to LDL. The captured LDL is readily stripped by 0.2% (m/m) SDS with a recovery of 95.4%. The superior separation performance of SiO2-NGs-CS is demonstrated by the isolation and selective discrimination of LDL from the simulated serum of hypercholesterolemia patients, as illustrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis assays.
Asunto(s)
Sulfatos de Condroitina/química , Hidrogeles/química , Lipoproteínas LDL/aislamiento & purificación , Nanogeles/química , Dióxido de Silicio/química , Adsorción , Animales , Bovinos , Electroforesis en Gel de Poliacrilamida , Humanos , Lipoproteínas LDL/sangre , Cloruro de Magnesio/químicaRESUMEN
A hierarchical multichannel polydopamine (HMPDA) nanoparticle with ample chondroitin sulfate (CS) is fabricated via modification of the silane coupling agent (APTES), followed by grafting CS on the unique bicontinuous open channels of HMPDA through amidation reaction. The obtained nanoparticles with both mesopores and macropores, abbreviated as HMPDA-A-CS15, possess a total pore volume of 0.3398 cm3 g-1, and a large surface area up to 69.10 m2 g-1. The as-prepared HMPDA-A-CS15 exhibits significantly enhanced selectivity for the separation of LDL, which is attributed to the specific recognition effect of CS for LDL. Furthermore, the unique large open channels endow the HMPDA-A-CS15 nanoparticles with a gratifying sorption capacity (1015.2 mg g-1) for LDL adsorption. The captured LDL can be stripped using 0.5% (v/v) ammonia solution with the advantage of easy atomization in downstream mass spectrometry (MS) analyses, and a recovery of 71.7% is achieved. Moreover, HMPDA-A-CS15 is further employed in the enrichment of LDL, which can be separated from the complex serum of simulated hypercholesterolemia patients with a favorable adsorption performance, as illustrated by the SDS-PAGE technique.
Asunto(s)
Fraccionamiento Químico/métodos , Sulfatos de Condroitina/química , Indoles/química , Lipoproteínas LDL/aislamiento & purificación , Nanopartículas/química , Polímeros/química , Adsorción , Lipoproteínas LDL/química , Espectrometría de Masas , Silanos/química , Factores de TiempoRESUMEN
This study was performed to examine the epidemiological features of maxillofacial fracture, including the incidence, causes, age and sex distribution, methods of treatment, and prognosis, in a local area.A retrospective study was performed to investigate the epidemiological characteristics of 829 patients with maxillofacial fractures treated in a hospital in northern China from August 2011 to July 2019. Sex, age, etiology, fracture site, and treatment method were obtained from the medical records.The average age of all 829 patients was 36.1 years, and most patients were in the 20- to 29-year age group. The male to female ratio was 3.04:1.00. Traffic accidents were the main cause of the maxillofacial fractures. The mandible was the most commonly fractured bone, and the parasymphysis was the most frequently affected site. Head injury was the most common associated injury. Open surgery with internal fixation was the first-choice treatment for most cases.Traffic accidents were the main cause of maxillofacial fractures, followed by falling. Open surgery with internal fixation was the leading treatment choice. Both functional and esthetic outcomes should be considered in the treatment of maxillofacial fractures.
Asunto(s)
Traumatismos Maxilofaciales/etiología , Accidentes de Tránsito/estadística & datos numéricos , Adolescente , Adulto , Factores de Edad , Niño , Preescolar , China/epidemiología , Femenino , Humanos , Incidencia , Lactante , Masculino , Traumatismos Maxilofaciales/epidemiología , Traumatismos Maxilofaciales/fisiopatología , Persona de Mediana Edad , Estudios Retrospectivos , Factores Sexuales , Resultado del TratamientoRESUMEN
DHTKD1, a part of 2-ketoadipic acid dehydrogenase complex, is involved in lysine and tryptophan catabolism. Mutations in DHTKD1 block the metabolic pathway and cause 2-aminoadipic and 2-oxoadipic aciduria (AMOXAD), an autosomal recessive inborn metabolic disorder. In addition, a nonsense mutation in DHTKD1 that we identified previously causes Charcot-Marie-Tooth disease (CMT) type 2Q, one of the most common inherited neurological disorders affecting the peripheral nerves in the musculature. However, the comprehensive molecular mechanism underlying CMT2Q remains elusive. Here, we show that Dhtkd1-/- mice mimic the major aspects of CMT2 phenotypes, characterized by progressive weakness and atrophy in the distal parts of limbs with motor and sensory dysfunctions, which are accompanied with decreased nerve conduction velocity. Moreover, DHTKD1 deficiency causes severe metabolic abnormalities and dramatically increased levels of 2-ketoadipic acid (2-KAA) and 2-aminoadipic acid (2-AAA) in urine. Further studies revealed that both 2-KAA and 2-AAA could stimulate insulin biosynthesis and secretion. Subsequently, elevated insulin regulates myelin protein zero (Mpz) transcription in Schwann cells via upregulating the expression of early growth response 2 (Egr2), leading to myelin structure damage and axonal degeneration. Finally, 2-AAA-fed mice do reproduce phenotypes similar to CMT2Q phenotypes. In conclusion, we have demonstrated that loss of DHTKD1 causes CMT2Q-like phenotypes through dysregulation of Mpz mRNA and protein zero (P0) which are closely associated with elevated DHTKD1 substrate and insulin levels. These findings further indicate an important role of metabolic disorders in addition to mitochondrial insufficiency in the pathogenesis of peripheral neuropathies.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Cetona Oxidorreductasas/deficiencia , Cetona Oxidorreductasas/genética , Ácido 2-Aminoadípico/metabolismo , Adipatos/metabolismo , Animales , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Codón sin Sentido , Modelos Animales de Enfermedad , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Humanos , Insulina/metabolismo , Complejo Cetoglutarato Deshidrogenasa , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína P0 de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Conducción Nerviosa , Fenotipo , Nervio Ciático/metabolismo , Nervio Ciático/patologíaRESUMEN
We describe the prenatal diagnosis and fetal phenotype of partial trisomy 12 (p12-pter) transmitted from a maternal reciprocal translocation 6;12. Genetic analysis was conducted on umbilical cord blood for a fetus accompanied with tricuspid regurgitation and orbital hypertelorism from a 27-year-old gravida 4, para 1 after sonography at gestation 35 weeks. The karyotype was unusual, with 46, XY, der (6), t (6;12) (p24; p12) mat. The pregnancy was terminated at 37 gestational weeks. The aborted fetus displayed dysmorphic features of a round flat face with prominent cheeks and high forehead, hypertelorism, short nose, broad and depressed nasal bridge, anteverted nares, deformed philtrum, open mouth, thin upper vermilion and broad everted lower lip, low-set ears and aural atresia, broad hands with simian creases, and a short neck. Fetal anatomy showed right artery catheter vagus, congenital cataract, no turbinate and external auditory canals. Through karyotype-phenotype analysis of this patient and a review of other reported cases, we believe this is a first report that expands the database of partial trisomy 12p, and is beneficial for future clinical genetic counseling. This study supports that phenotypic variability depends on the type and extent of the associated partial monosomy.