Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 59(12): 7308-15, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26369955

RESUMEN

Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections.


Asunto(s)
Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Cuerpos Extraños/prevención & control , Gases em Plasma/química , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Animales , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Materiales Biocompatibles Revestidos/síntesis química , Femenino , Fibrinógeno/antagonistas & inhibidores , Fibrinógeno/química , Fibronectinas/antagonistas & inhibidores , Fibronectinas/química , Cuerpos Extraños/microbiología , Humanos , Ratones , Ratones Endogámicos BALB C , Oxígeno/química , Prótesis e Implantes/microbiología , Unión Proteica/efectos de los fármacos , Albúmina Sérica/antagonistas & inhibidores , Albúmina Sérica/química , Elastómeros de Silicona/química , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Compuestos de Trimetilsililo/química
2.
Appl Microbiol Biotechnol ; 96(1): 161-70, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22543350

RESUMEN

Cytophaga hutchinsonii is a Gram-negative gliding bacterium, which can rapidly degrade crystalline cellulose via a novel strategy without any recognizable processive cellulases. Its mechanism of cellulose binding and degradation is still a mystery. In this study, the mutagenesis of C. hutchinsonii with the mariner-based transposon HimarEm3 and gene complementation with the oriC-based plasmid carrying the antibiotic resistance gene cfxA or tetQ were reported for the first time to provide valuable tools for mutagenesis and genetic manipulation of the bacterium. Mutant A-4 with a transposon mutation in gene CHU_0134, which encodes a putative thiol-disulfide isomerase exhibits defects in cell motility and cellulose degradation. The cellulose binding ability of A-4 was only half of that of the wild-type strain, while the endo-cellulase activity of the cell-free supernatants and on the intact cell surface of A-4 decreased by 40%. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of proteins binding to cellulose in the outer membrane showed that most of them were significantly decreased or disappeared in A-4 including some Gld proteins and hypothetical proteins, indicating that these proteins might play an important role in cell motility and cellulose binding and degradation by the bacterium.


Asunto(s)
Celulosa/metabolismo , Cytophaga/genética , Cytophaga/fisiología , Genes Bacterianos , Locomoción , Proteínas Bacterianas/análisis , Cytophaga/metabolismo , Elementos Transponibles de ADN , Electroforesis en Gel de Poliacrilamida , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Genética Microbiana/métodos , Biología Molecular/métodos , Mutagénesis Insercional , Proteína Disulfuro Isomerasas/genética , Proteoma/análisis
3.
Wei Sheng Wu Xue Bao ; 52(8): 1027-32, 2012 Aug 04.
Artículo en Zh | MEDLINE | ID: mdl-23173440

RESUMEN

OBJECTIVE: The aim of the study was to understand the mechanism of Cytophaga hutchinsonii adhension to cellulose. METHODS: The effects of different factors on the bacterial adhesion to cellulose were studied, including bacterial age, pH, temperature, cell surface charge, cell viability, cell surface protein, extracellular polysaccharides, and cellulose derivates. RESULTS: Treatments with heat and protease reduced the adhesion remarkably. But treatments with NaN3, formalin, glutaraldehyde, Congo red and NaIO4 had only slight effect on the adhesion. The adhension of Cytophaga hutchinsonii cells to microcrystalline cellulose was specific and not inhibited by cellobiose or carboxymethyl cellulose. CONCLUSION: The adhesion of Cytophaga hutchinsonii to cellulose was closely related to cell surface proteins, while cellular metabolic activity and extracellular polysaccharides had only slight effect on it. It is speculated that there might be some specific cellulose binding proteins on the cell surface.


Asunto(s)
Adhesión Bacteriana , Celulosa/química , Cytophaga/fisiología , Cytophaga/química , Cytophaga/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA