Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(36): e2303033, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37964406

RESUMEN

Myocardial infarction (MI) is a major cause of mortality worldwide. The major limitation of regenerative therapy for MI is poor cardiac retention of therapeutics, which results from an inefficient vascular network and poor targeting ability. In this study, a two-layer intrinsically magnetic epicardial patch (MagPatch) prepared by 3D printing with biocompatible materials like poly (glycerol sebacate) (PGS) is designed, poly (ε-caprolactone) (PCL), and NdFeB. The two-layer structure ensured that the MagPatch multifariously utilized the magnetic force for rapid vascular reconstruction and targeted drug delivery. MagPatch accumulates superparamagnetic iron oxide (SPION)-labelled endothelial cells, instantly forming a ready-implanted organization, and rapidly reconstructs a vascular network anastomosed with the host. In addition, the prefabricated vascular network within the MagPatch allowed for the efficient accumulation of SPION-labelled therapeutics, amplifying the therapeutic effects of cardiac repair. This study defined an extendable therapeutic platform for vascularization-based targeted drug delivery that is expected to assist in the progress of regenerative therapies in clinical applications.


Asunto(s)
Infarto del Miocardio , Poliésteres , Humanos , Poliésteres/química , Células Endoteliales , Materiales Biocompatibles/química , Fenómenos Magnéticos
2.
ACS Nano ; 16(10): 16954-16965, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36125071

RESUMEN

Self-powered information encoding devices (IEDs) have drawn considerable interest owing to their capability to process information without batteries. Next-generation IEDs should be reprogrammable, self-healing, and wearable to satisfy the emerging requirements for multifunctional IEDs; however, such devices have not been demonstrated. Herein, an integrated triboelectric nanogenerator-based IED with the aforementioned features was developed based on the designed light-responsive high-permittivity poly(sebacoyl diglyceride-co-4,4'-azodibenzoyl diglyceride) elastomer (PSeDAE) with a triple-shape-memory effect. The electrical memory feature was achieved through a microscale shape-memory property, enabling spatiotemporal information reprogramming for the IED. Macroscale shape-memory behavior afforded the IED shape-reprogramming ability, yielding wearable and detachable features. The dynamic transesterifications and light-heating groups in the PSeDAE afforded a remotely controlled rearrangement of its cross-linking network, producing the self-healing IED.


Asunto(s)
Elastómeros , Dispositivos Electrónicos Vestibles , Diglicéridos , Suministros de Energía Eléctrica
3.
Acta Biomater ; 105: 97-110, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31953195

RESUMEN

Cartilage defect repair remains a great clinical challenge due to the limited self-regeneration capacity of cartilage tissue. Surgical treatment of injured cartilage is rather difficult due to the narrow space in the articular cavity and irregular defect area. Herein, we designed and fabricated chondrogenic and physiological-temperature-triggered shape-memory ternary scaffolds for cell-free cartilage repair, where the poly (glycerol sebacate) (PGS) networks ensured elasticity and shape recovery, crystallized poly (1,3-propylene sebacate) (PPS) acted as switchable phase, and immobilized bioactive kartogenin (KGN) endowed the scaffolds with chondrogenic capacity. The resultant scaffolds exhibited shape-memory properties with shape-memory fixed ratio of 98% and recovered ratio of 97% at 37°C for PPS/PGS/KGN-100, indicating a good potential for minimally invasive implantation. The scaffolds gradually degraded in Dulbecco's phosphate-buffered saline and released KGN up to 12 weeks in vitro. In addition, the scaffolds promoted chondrogenic differentiation while inhibiting osteogenic differentiation of bone marrow-derived mesenchymal stem cells in a concentration-dependent manner and cartilage regeneration in full-thickness defects of rat femoropatellar groove for 12 weeks. Consequently, the PPS/PGS/KGN-100 scaffolds stimulated the formation of an overlying layer of neocartilage mimicking the characteristic architecture of native articular cartilage even in the absence of exogenous growth factors and seeded cells. This study provides much inspiration for future research on cartilage tissue engineering. STATEMENT OF SIGNIFICANCE: There are two crucial challenges for cartilage defect repair: the lack of self-regeneration capacity of cartilage tissue and difficult scaffold implantation via traditional open surgery due to space-limited joints. Herein, bioactive body-temperature-responsive shape memory scaffolds are designed to simultaneously address the challenges. The scaffolds can be readily implanted by minimally invasive approach and recover by body-temperature of patient. The integration of kartogenin endows scaffolds the bioactivity, leading to the first example of bulk shape-memory scaffolds for cell-free cartilage repair. These characteristics make the scaffolds advantageous for clinical translation. Moreover, our developed material is easy to be functionalized due to the presence of extensive free hydroxyl groups and provides a versatile platform to design diverse functional shape memory biomaterials.


Asunto(s)
Cartílago Articular/fisiología , Condrogénesis , Regeneración/efectos de los fármacos , Materiales Inteligentes/farmacología , Andamios del Tejido/química , Anilidas/química , Anilidas/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Condrogénesis/efectos de los fármacos , Decanoatos/química , Decanoatos/farmacología , Preparaciones de Acción Retardada/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glicerol/análogos & derivados , Glicerol/química , Glicerol/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacología , Polímeros/química , Polímeros/farmacología , Ratas Sprague-Dawley , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA