Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494154

RESUMEN

Aldose reductase (AR) is a member of the reduced nicotinamide adenosine dinucleotide phosphate (NADPH)-dependent aldo-keto reductase superfamily. It is also the rate-limiting enzyme of the polyol pathway, catalyzing the conversion of glucose to sorbitol, which is subsequently converted to fructose by sorbitol dehydrogenase. AR is highly expressed by Schwann cells in the peripheral nervous system (PNS). The excess glucose flux through AR of the polyol pathway under hyperglycemic conditions has been suggested to play a critical role in the development and progression of diabetic peripheral neuropathy (DPN). Despite the intensive basic and clinical studies over the past four decades, the significance of AR over-activation as the pathogenic mechanism of DPN remains to be elucidated. Moreover, the expected efficacy of some AR inhibitors in patients with DPN has been unsatisfactory, which prompted us to further investigate and review the understanding of the physiological and pathological roles of AR in the PNS. Particularly, the investigation of AR and the polyol pathway using immortalized Schwann cells established from normal and AR-deficient mice could shed light on the causal relationship between the metabolic abnormalities of Schwann cells and discordance of axon-Schwann cell interplay in DPN, and led to the development of better therapeutic strategies against DPN.


Asunto(s)
Aldehído Reductasa/metabolismo , Redes y Vías Metabólicas , Polímeros/metabolismo , Células de Schwann/metabolismo , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/genética , Animales , Diabetes Mellitus/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Humanos , Oxidación-Reducción , Sorbitol/metabolismo
2.
J Neurochem ; 144(6): 710-722, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29238976

RESUMEN

The increased glucose flux into the polyol pathway via aldose reductase (AR) is recognized as a major contributing factor for the pathogenesis of diabetic neuropathy, whereas little is known about the functional significance of AR in the peripheral nervous system. Spontaneously immortalized Schwann cell lines established from long-term cultures of AR-deficient and normal C57BL/6 mouse dorsal root ganglia and peripheral nerves can be useful tools for studying the physiological and pathological roles of AR. These cell lines, designated as immortalized knockout AR Schwann cells 1 (IKARS1) and 1970C3, respectively, demonstrated distinctive Schwann cell phenotypes, such as spindle-shaped morphology and immunoreactivity to S100, p75 neurotrophin receptor, and vimentin, and extracellular release of neurotrophic factors. Conditioned media obtained from these cells promoted neuronal survival and neurite outgrowth of cultured adult mouse dorsal root ganglia neurons. Microarray and real-time RT-PCR analyses revealed significantly down-regulated mRNA expression of polyol pathway-related enzymes, sorbitol dehydrogenase and ketohexokinase, in IKARS1 cells compared with those in 1970C3 cells. In contrast, significantly up-regulated mRNA expression of aldo-keto reductases (AKR1B7 and AKR1B8) and aldehyde dehydrogenases (ALDH1L2, ALDH5A1, and ALDH7A1) was detected in IKARS1 cells compared with 1970C3 cells. Exposure to reactive aldehydes (3-deoxyglucosone, methylglyoxal, and 4-hydroxynonenal) significantly up-regulated the mRNA expression of AKR1B7 and AKR1B8 in IKARS1 cells, but not in 1970C3 cells. Because no significant differences in viability between these two cell lines after exposure to these aldehydes were observed, it can be assumed that the aldehyde detoxification is taken over by AKR1B7 and AKR1B8 in the absence of AR.


Asunto(s)
Aldehído Reductasa/metabolismo , Aldehídos/metabolismo , Polímeros/metabolismo , Células de Schwann/metabolismo , Aldehído Reductasa/genética , Animales , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular , Medios de Cultivo Condicionados , Femenino , Ganglios Espinales/citología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas , Nervios Periféricos/citología , ARN Mensajero/metabolismo , Transducción de Señal , Regulación hacia Arriba
3.
Histochem Cell Biol ; 149(5): 537-543, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29435762

RESUMEN

Co-culture models of neurons and Schwann cells have been utilized for the study of myelination and demyelination in the peripheral nervous system; in most of the previous studies, however, these cells were obtained by primary culture with embryonic or neonatal animals. A spontaneously immortalized Schwann cell line IFRS1 from long-term cultures of adult Fischer rat peripheral nerves has been shown to retain fundamental ability to myelinate neurites in co-cultures with adult rat dorsal root ganglion neurons and nerve growth factor-primed PC12 cells. Our current investigation focuses on the establishment of stable co-culture system with IFRS1 cells and NSC-34 motor neuron-like cells. NSC-34 cells were seeded at a low density (2 × 103/cm2) and maintained for 5-7 days in serum-containing medium supplemented with non-essential amino acids and brain-derived neurotrophic factor (BDNF; 10 ng/mL). Upon observation of neurite outgrowth under a phase-contrast microscope, the NSC-34 cells were exposed to an anti-mitotic agent mitomycin C (1 µg/mL) for 12-16 h, then co-cultured with IFRS1 cells (2 × 104/cm2), and maintained in serum-containing medium supplemented with ascorbic acid (50 µg/mL), BDNF (10 ng/mL), and ciliary neurotrophic factor (10 ng/mL). Double immunofluorescence staining carried out at day 28 of the co-culture showed myelin protein (P0 or PMP22)-immunoreactive IFRS1 cells surrounding the ßIII tubulin-immunoreactive neurites. This co-culture system can be a beneficial tool to study the pathogenesis of motor neuron diseases (e.g., amyotrophic lateral sclerosis, Charcot-Marie-Tooth diseases, and immune-mediated demyelinating neuropathies) and novel therapeutic approaches against them.


Asunto(s)
Técnicas de Cocultivo/métodos , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Vaina de Mielina/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo , Animales , Línea Celular , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA